## Not run:
#
# # Model: 3D function
#
# distribution = list()
# for (i in 1:3) distribution[[i]]=list("norm",c(0,1))
#
# # Monte Carlo sampling to obtain failure points
#
# N = 10000
# X = matrix(0,ncol=3,nrow=N)
# for(i in 1:3) X[,i] = rnorm(N,0,1)
#
# Y = 2 * X[,1] + X[,2] + X[,3]/2
# q95 = quantile(Y,0.95)
#
# # sensitivity indices with perturbation of the mean
#
# v_delta = seq(-1,1,1/10)
# toto = PLIquantile(0.95,X,Y,q95,deltasvector=v_delta,
# InputDistributions=distribution,type="MOY",samedelta=TRUE)
#
# par(mar=c(4,5,1,1))
# plot(v_delta,toto[,2],ylim=c(-4.5,4.5),xlab=expression(delta),
# ylab=expression(hat(S[i*delta])),pch=19,cex=1.5)
# points(v_delta,toto[,1],col="darkgreen",pch=15,cex=1.5)
# points(v_delta,toto[,3],col="red",pch=17,cex=1.5)
# abline(h=0,lty=2)
# legend(0.8,4.4,legend=c("X1","X2","X3"),
# col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)
#
# ## End(Not run)
Run the code above in your browser using DataLab