This function implements k-fold cross-validation on complete or incomplete datasets for partial least squares regression generalized linear models
cv.plsRglm(x, …)
# S3 method for default
cv.plsRglmmodel(dataY,dataX,nt=2,limQ2set=.0975,
modele="pls", family=NULL, K=5, NK=1, grouplist=NULL, random=TRUE,
scaleX=TRUE, scaleY=NULL, keepcoeffs=FALSE, keepfolds=FALSE,
keepdataY=TRUE, keepMclassed=FALSE, tol_Xi=10^(-12), weights, method,
verbose=TRUE)
# S3 method for formula
cv.plsRglmmodel(formula,data=NULL,nt=2,limQ2set=.0975,
modele="pls", family=NULL, K=5, NK=1, grouplist=NULL, random=TRUE,
scaleX=TRUE, scaleY=NULL, keepcoeffs=FALSE, keepfolds=FALSE,
keepdataY=TRUE, keepMclassed=FALSE, tol_Xi=10^(-12),weights,subset,
start=NULL,etastart,mustart,offset,method,control= list(),contrasts=NULL,
verbose=TRUE)
PLS_glm_kfoldcv(dataY, dataX, nt = 2, limQ2set = 0.0975, modele = "pls",
family = NULL, K = 5, NK = 1, grouplist = NULL, random = TRUE,
scaleX = TRUE, scaleY = NULL, keepcoeffs = FALSE, keepfolds = FALSE,
keepdataY = TRUE, keepMclassed=FALSE, tol_Xi = 10^(-12), weights, method,
verbose=TRUE)
PLS_glm_kfoldcv_formula(formula,data=NULL,nt=2,limQ2set=.0975,modele="pls",
family=NULL, K=5, NK=1, grouplist=NULL, random=TRUE,
scaleX=TRUE, scaleY=NULL, keepcoeffs=FALSE, keepfolds=FALSE, keepdataY=TRUE,
keepMclassed=FALSE, tol_Xi=10^(-12),weights,subset,start=NULL,etastart,
mustart,offset,method,control= list(),contrasts=NULL, verbose=TRUE)
a formula or a response (training) dataset
response (training) dataset
predictor(s) (training) dataset
an object of class "formula
" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data
, the variables are taken from environment(formula)
, typically the environment from which plsRglm
is called.
number of components to be extracted
limit value for the Q2
name of the PLS glm model to be fitted ("pls"
, "pls-glm-Gamma"
, "pls-glm-gaussian"
, "pls-glm-inverse.gaussian"
, "pls-glm-logistic"
, "pls-glm-poisson"
, "pls-glm-polr"
). Use "modele=pls-glm-family"
to enable the family
option.
a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family
for details of family functions.) To use the family option, please set modele="pls-glm-family"
. User defined families can also be defined. See details.
number of groups. Defaults to 5.
number of times the group division is made
to specify the members of the K
groups
should the K
groups be made randomly. Defaults to TRUE
scale the predictor(s) : must be set to TRUE for modele="pls"
and should be for glms pls.
scale the response : Yes/No. Ignored since non always possible for glm responses.
shall the coefficients for each model be returned
shall the groups' composition be returned
shall the observed value of the response for each one of the predicted value be returned
shall the number of miss classed be returned (unavailable)
minimal value for Norm2(Xi) and dataX
. It defaults to
an optional vector of 'prior weights' to be used in the fitting process. Should be NULL
or a numeric vector.
an optional vector specifying a subset of observations to be used in the fitting process.
starting values for the parameters in the linear predictor.
starting values for the linear predictor.
starting values for the vector of means.
this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL
or a numeric vector of length equal to the number of cases. One or more offset
terms can be included in the formula instead or as well, and if more than one is specified their sum is used. See model.offset
.
"pls-glm-Gamma"
, "pls-glm-gaussian"
, "pls-glm-inverse.gaussian"
, "pls-glm-logistic"
, "pls-glm-poisson"
, "modele=pls-glm-family"
)the method to be used in fitting the model. The default method "glm.fit"
uses iteratively reweighted least squares (IWLS). User-supplied fitting functions can be supplied either as a function or a character string naming a function, with a function which takes the same arguments as glm.fit
. If "model.frame", the model frame is returned.
pls-glm-polr
logistic, probit, complementary log-log or cauchit (corresponding to a Cauchy latent variable).
a list of parameters for controlling the fitting process. For glm.fit
this is passed to glm.control
.
an optional list. See the contrasts.arg
of model.matrix.default
.
should info messages be displayed ?
arguments to pass to cv.plsRglmmodel.default
or to cv.plsRglmmodel.formula
An object of class "cv.plsRglmmodel"
.
list of NK
. Each element of the list sums up the results for a group division:
list of K
matrices of size about nrow(dataX)/K * nt
with the predicted values for a growing number of components
…
list of K
matrices of size about nrow(dataX)/K * nt
with the predicted values for a growing number of components
list of NK
. Each element of the list sums up the informations for a group division:
list of K
vectors of length about nrow(dataX)
with the numbers of the rows of dataX
that were used as a training set
…
list of K
vectors of length about nrow(dataX)
with the numbers of the rows of dataX
that were used as a training set
list of NK
. Each element of the list sums up the results for a group division:
list of K
matrices of size about nrow(dataX)/K * 1
with the observed values of the response
…
list of K
matrices of size about nrow(dataX)/K * 1
with the observed values of the response
the call of the function
Predicts 1 group with the K-1
other groups. Leave one out cross validation is thus obtained for K==nrow(dataX)
.
There are seven different predefined models with predefined link functions available :
"pls"
ordinary pls models
"pls-glm-Gamma"
glm gaussian with inverse link pls models
"pls-glm-gaussian"
glm gaussian with identity link pls models
"pls-glm-inverse-gamma"
glm binomial with square inverse link pls models
"pls-glm-logistic"
glm binomial with logit link pls models
"pls-glm-poisson"
glm poisson with log link pls models
"pls-glm-polr"
glm polr with logit link pls models
Using the "family="
option and setting "modele=pls-glm-family"
allows changing the family and link function the same way as for the glm
function. As a consequence user-specified families can also be used.
gaussian
familyaccepts the links (as names) identity
, log
and inverse
.
binomial
familyaccepts the links logit
, probit
, cauchit
, (corresponding to logistic, normal and Cauchy CDFs respectively) log
and cloglog
(complementary log-log).
Gamma
familyaccepts the links inverse
, identity
and log
.
poisson
familyaccepts the links log
, identity
, and sqrt
.
inverse.gaussian
familyaccepts the links 1/mu^2
, inverse
, identity
and log
.
quasi
familyaccepts the links logit
, probit
, cloglog
, identity
, inverse
, log
, 1/mu^2
and sqrt
.
power
can be used to create a power link function.
arguments to pass to cv.plsRglmmodel.default
or to cv.plsRglmmodel.formula
A typical predictor has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with any duplicates removed.
A specification of the form first:second indicates the the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.
The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula.
Non-NULL weights can be used to indicate that different observations have different dispersions (with the values in weights being inversely proportional to the dispersions); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations.
Nicolas Meyer, Myriam Maumy-Bertrand et Frederic Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18.
Summary method summary.cv.plsRglmmodel
. kfolds2coeff
, kfolds2Pressind
, kfolds2Press
, kfolds2Mclassedind
, kfolds2Mclassed
and summary
to extract and transform results from k-fold cross validation.
# NOT RUN {
data(Cornell)
bbb <- cv.plsRglm(Y~.,data=Cornell,nt=10)
(sum1<-summary(bbb))
cvtable(sum1)
bbb2 <- cv.plsRglm(Y~.,data=Cornell,nt=3,
modele="pls-glm-family",family=gaussian(),K=12,verbose=FALSE)
(sum2<-summary(bbb2))
cvtable(sum2)
# }
# NOT RUN {
#random=TRUE is the default to randomly create folds for repeated CV
bbb3 <- cv.plsRglm(Y~.,data=Cornell,nt=3,
modele="pls-glm-family",family=gaussian(),K=6,NK=10, verbose=FALSE)
(sum3<-summary(bbb3))
plot(cvtable(sum3))
data(aze_compl)
bbb <- cv.plsRglm(y~.,data=aze_compl,nt=10,K=10,modele="pls",keepcoeffs=TRUE, verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb)
bbb2 <- cv.plsRglm(y~.,data=aze_compl,nt=10,K=10,modele="pls-glm-family",
family=binomial(probit),keepcoeffs=TRUE, verbose=FALSE)
bbb2 <- cv.plsRglm(y~.,data=aze_compl,nt=10,K=10,
modele="pls-glm-logistic",keepcoeffs=TRUE, verbose=FALSE)
summary(bbb,MClassed=TRUE)
summary(bbb2,MClassed=TRUE)
kfolds2coeff(bbb2)
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
rm(list=c("bbb","bbb2"))
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb <- cv.plsRglm(round(x11)~.,data=pine,nt=10,modele="pls-glm-family",
family=poisson(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
bbb <- cv.plsRglm(round(x11)~.,data=pine,nt=10,
modele="pls-glm-poisson",K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
summary(bbb)
PLS_lm(ypine,Xpine,10,typeVC="standard")$InfCrit
data(pineNAX21)
bbb2 <- cv.plsRglm(round(x11)~.,data=pineNAX21,nt=10,
modele="pls-glm-family",family=poisson(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
bbb2 <- cv.plsRglm(round(x11)~.,data=pineNAX21,nt=10,
modele="pls-glm-poisson",K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
data(XpineNAX21)
PLS_lm(ypine,XpineNAX21,10,typeVC="standard")$InfCrit
rm(list=c("Xpine","XpineNAX21","ypine","bbb","bbb2"))
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb <- cv.plsRglm(x11~.,data=pine,nt=10,modele="pls-glm-family",
family=Gamma,K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
bbb <- cv.plsRglm(x11~.,data=pine,nt=10,modele="pls-glm-Gamma",
K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
summary(bbb)
PLS_lm(ypine,Xpine,10,typeVC="standard")$InfCrit
data(pineNAX21)
bbb2 <- cv.plsRglm(x11~.,data=pineNAX21,nt=10,
modele="pls-glm-family",family=Gamma(),K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
bbb2 <- cv.plsRglm(x11~.,data=pineNAX21,nt=10,
modele="pls-glm-Gamma",K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
PLS_lm(ypine,XpineNAX21,10,typeVC="standard")$InfCrit
rm(list=c("Xpine","XpineNAX21","ypine","bbb","bbb2"))
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsRglm(Y~.,data=Cornell,nt=10,NK=1,modele="pls",verbose=FALSE)
summary(bbb)
cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-inverse.gaussian",K=12,verbose=FALSE)
cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-family",
family=inverse.gaussian,K=12,verbose=FALSE)
cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-inverse.gaussian",K=6,
NK=2,verbose=FALSE)$results_kfolds
cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-family",family=inverse.gaussian(),
K=6,NK=2,verbose=FALSE)$results_kfolds
cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-inverse.gaussian",K=6,
NK=2,verbose=FALSE)$results_kfolds
cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-family",
family=inverse.gaussian(link = "1/mu^2"),K=6,NK=2,verbose=FALSE)$results_kfolds
bbb2 <- cv.plsRglm(Y~.,data=Cornell,nt=10,
modele="pls-glm-inverse.gaussian",keepcoeffs=TRUE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm(yCornell,XCornell,10,typeVC="standard")$InfCrit
rm(list=c("XCornell","yCornell","bbb","bbb2"))
# }
# NOT RUN {
data(Cornell)
bbb <- cv.plsRglm(Y~.,data=Cornell,nt=10,NK=1,modele="pls")
summary(bbb)
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=gaussian(),K=12)
# }
# NOT RUN {
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=gaussian(),K=6,
NK=2,random=TRUE,keepfolds=TRUE,verbose=FALSE)$results_kfolds
#Different ways of model specifications
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=gaussian(),K=6,
NK=2,verbose=FALSE)$results_kfolds
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=gaussian,
K=6,NK=2,verbose=FALSE)$results_kfolds
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=gaussian(),
K=6,NK=2,verbose=FALSE)$results_kfolds
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=gaussian(link=log),
K=6,NK=2,verbose=FALSE)$results_kfolds
bbb2 <- cv.plsRglm(Y~.,data=Cornell,nt=10,
modele="pls-glm-gaussian",keepcoeffs=TRUE,verbose=FALSE)
bbb2 <- cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-family",
family=gaussian(link=log),K=6,keepcoeffs=TRUE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm_formula(Y~.,data=Cornell,10,typeVC="standard")$InfCrit
rm(list=c("bbb","bbb2"))
data(pine)
bbb <- cv.plsRglm(x11~.,data=pine,nt=10,modele="pls-glm-family",
family=gaussian(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
bbb <- cv.plsRglm(x11~.,data=pine,nt=10,modele="pls-glm-family",family=gaussian(),
K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
summary(bbb)
PLS_lm_formula(x11~.,data=pine,nt=10,typeVC="standard")$InfCrit
data(pineNAX21)
bbb2 <- cv.plsRglm(x11~.,data=pineNAX21,nt=10,
modele="pls-glm-family",family=gaussian(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
bbb2 <- cv.plsRglm(x11~.,data=pineNAX21,nt=10,
modele="pls-glm-gaussian",K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm_formula(x11~.,data=pineNAX21,nt=10,typeVC="standard")$InfCrit
rm(list=c("bbb","bbb2"))
data(aze_compl)
bbb <- cv.plsRglm(y~.,data=aze_compl,nt=10,K=10,modele="pls",
keepcoeffs=TRUE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb)
bbb2 <- cv.plsRglm(y~.,data=aze_compl,nt=3,K=10,
modele="pls-glm-family",family=binomial(probit),keepcoeffs=TRUE,verbose=FALSE)
bbb2 <- cv.plsRglm(y~.,data=aze_compl,nt=3,K=10,
modele="pls-glm-logistic",keepcoeffs=TRUE,verbose=FALSE)
summary(bbb,MClassed=TRUE)
summary(bbb2,MClassed=TRUE)
kfolds2coeff(bbb2)
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
rm(list=c("bbb","bbb2"))
data(pine)
bbb <- cv.plsRglm(round(x11)~.,data=pine,nt=10,
modele="pls-glm-family",family=poisson(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
bbb <- cv.plsRglm(round(x11)~.,data=pine,nt=10,
modele="pls-glm-poisson",K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
summary(bbb)
PLS_lm_formula(x11~.,data=pine,10,typeVC="standard")$InfCrit
data(pineNAX21)
bbb2 <- cv.plsRglm(round(x11)~.,data=pineNAX21,nt=10,
modele="pls-glm-family",family=poisson(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
bbb2 <- cv.plsRglm(round(x11)~.,data=pineNAX21,nt=10,
modele="pls-glm-poisson",K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm_formula(x11~.,data=pineNAX21,10,typeVC="standard")$InfCrit
rm(list=c("bbb","bbb2"))
data(pine)
bbb <- cv.plsRglm(x11~.,data=pine,nt=10,modele="pls-glm-family",
family=Gamma,K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
bbb <- cv.plsRglm(x11~.,data=pine,nt=10,modele="pls-glm-Gamma",
K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
summary(bbb)
PLS_lm_formula(x11~.,data=pine,10,typeVC="standard")$InfCrit
data(pineNAX21)
bbb2 <- cv.plsRglm(x11~.,data=pineNAX21,nt=10,
modele="pls-glm-family",family=Gamma(),K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
bbb2 <- cv.plsRglm(x11~.,data=pineNAX21,nt=10,
modele="pls-glm-Gamma",K=10,keepcoeffs=TRUE,keepfolds=FALSE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm_formula(x11~.,data=pineNAX21,10,typeVC="standard")$InfCrit
rm(list=c("bbb","bbb2"))
data(Cornell)
summary(cv.plsRglm(Y~.,data=Cornell,nt=10,NK=1,modele="pls",verbose=FALSE))
cv.plsRglm(Y~.,data=Cornell,nt=3,
modele="pls-glm-inverse.gaussian",K=12,verbose=FALSE)
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=inverse.gaussian,K=12,verbose=FALSE)
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-inverse.gaussian",K=6,
NK=2,verbose=FALSE)$results_kfolds
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-family",
family=inverse.gaussian(),K=6,NK=2,verbose=FALSE)$results_kfolds
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-inverse.gaussian",K=6,
NK=2,verbose=FALSE)$results_kfolds
cv.plsRglm(Y~.,data=Cornell,nt=3,modele="pls-glm-family",
family=inverse.gaussian(link = "1/mu^2"),K=6,NK=2,verbose=FALSE)$results_kfolds
bbb2 <- cv.plsRglm(Y~.,data=Cornell,nt=10,
modele="pls-glm-inverse.gaussian",keepcoeffs=TRUE,verbose=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm_formula(Y~.,data=Cornell,10,typeVC="standard")$InfCrit
rm(list=c("bbb","bbb2"))
data(bordeaux)
summary(cv.plsRglm(Quality~.,data=bordeaux,10,
modele="pls-glm-polr",K=7))
data(bordeauxNA)
summary(cv.plsRglm(Quality~.,data=bordeauxNA,
10,modele="pls-glm-polr",K=10,verbose=FALSE))
summary(cv.plsRglm(Quality~.,data=bordeaux,nt=2,K=7,
modele="pls-glm-polr",method="logistic",verbose=FALSE))
summary(cv.plsRglm(Quality~.,data=bordeaux,nt=2,K=7,
modele="pls-glm-polr",method="probit",verbose=FALSE))
summary(cv.plsRglm(Quality~.,data=bordeaux,nt=2,K=7,
modele="pls-glm-polr",method="cloglog",verbose=FALSE))
suppressWarnings(summary(cv.plsRglm(Quality~.,data=bordeaux,nt=2,K=7,
modele="pls-glm-polr",method="cauchit",verbose=FALSE)))
# }
Run the code above in your browser using DataLab