data(Cornell)
bbb <- PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=10,NK=1,modele="pls")
kfolds2CVinfos_glm(bbb)
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-gaussian",K=12)
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-gaussian",K=6,NK=2,random=TRUE,keepfolds=TRUE)$results_kfolds
#Different ways of model specifications
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-gaussian",K=6,NK=2,random=FALSE,keepfolds=TRUE)$results_kfolds
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=gaussian,K=6,NK=2,random=FALSE,keepfolds=TRUE)$results_kfolds
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=gaussian(),K=6,NK=2,random=FALSE,keepfolds=TRUE)$results_kfolds
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=gaussian(link=log),K=6,NK=2,random=FALSE,keepfolds=TRUE)$results_kfolds
bbb2 <- PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=10,modele="pls-glm-gaussian",keepcoeffs=TRUE)
bbb2 <- PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=gaussian(link=log),K=6,keepcoeffs=TRUE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
kfolds2CVinfos_glm(bbb2)
PLS_lm_formula(log(Y)~.,data=Cornell,10,typeVC="standard")$CVinfos
rm(list=c("bbb","bbb2"))
data(pine)
bbb <- PLS_glm_kfoldcv_formula(x11~.,data=pine,nt=10,modele="pls-glm-family",family=gaussian(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bbb <- PLS_glm_kfoldcv_formula(x11~.,data=pine,nt=10,modele="pls-glm-gaussian",K=10,keepcoeffs=TRUE,keepfolds=FALSE)
#For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
kfolds2CVinfos_glm(bbb)
PLS_lm_formula(log(x11)~.,data=pine,nt=10,typeVC="standard")$CVinfos
pineNAX21 <- pine
pineNAX21[1,2] <- NA
bbb2 <- PLS_glm_kfoldcv_formula(x11~.,data=pineNAX21,nt=10,modele="pls-glm-family",family=gaussian(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bbb2 <- PLS_glm_kfoldcv_formula(x11~.,data=pineNAX21,nt=10,modele="pls-glm-gaussian",K=10,keepcoeffs=TRUE,keepfolds=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
kfolds2CVinfos_glm(bbb2)
PLS_lm_formula(log(x11)~.,data=pineNAX21,nt=10,typeVC="standard")$CVinfos
rm(list=c("pineNAX21","bbb","bbb2"))
data(aze_compl)
bbb <- PLS_glm_kfoldcv_formula(y~.,data=aze_compl,nt=10,K=10,modele="pls",keepcoeffs=TRUE)
#For Jackknife computations
kfolds2coeff(bbb)
bbb2 <- PLS_glm_kfoldcv_formula(y~.,data=aze_compl,nt=3,K=10,modele="pls-glm-family",family=binomial(probit),keepcoeffs=TRUE)
bbb2 <- PLS_glm_kfoldcv_formula(y~.,data=aze_compl,nt=3,K=10,modele="pls-glm-logistic",keepcoeffs=TRUE)
kfolds2CVinfos_glm(bbb,MClassed=TRUE)
kfolds2CVinfos_glm(bbb2,MClassed=TRUE)
kfolds2coeff(bbb2)
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
kfolds2CVinfos_glm(bbb2)
rm(list=c("bbb","bbb2"))
data(pine)
bbb <- PLS_glm_kfoldcv_formula(round(x11)~.,data=pine,nt=10,modele="pls-glm-family",family=poisson(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bbb <- PLS_glm_kfoldcv_formula(round(x11)~.,data=pine,nt=10,modele="pls-glm-poisson",K=10,keepcoeffs=TRUE,keepfolds=FALSE)
#For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
kfolds2CVinfos_glm(bbb)
PLS_lm_formula(log(x11)~.,data=pine,10,typeVC="standard")$CVinfos
pineNAX21 <- pine
pineNAX21[1,2] <- NA
bbb2 <- PLS_glm_kfoldcv_formula(round(x11)~.,data=pineNAX21,nt=10,modele="pls-glm-family",family=poisson(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bbb2 <- PLS_glm_kfoldcv_formula(round(x11)~.,data=pineNAX21,nt=10,modele="pls-glm-poisson",K=10,keepcoeffs=TRUE,keepfolds=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
kfolds2CVinfos_glm(bbb2)
PLS_lm_formula(log(x11)~.,data=pineNAX21,10,typeVC="standard")$CVinfos
rm(list=c("pineNAX21","bbb","bbb2"))
data(pine)
bbb <- PLS_glm_kfoldcv_formula(x11~.,data=pine,nt=10,modele="pls-glm-family",family=Gamma,K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bbb <- PLS_glm_kfoldcv_formula(x11~.,data=pine,nt=10,modele="pls-glm-Gamma",K=10,keepcoeffs=TRUE,keepfolds=FALSE)
#For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
kfolds2CVinfos_glm(bbb)
PLS_lm_formula(log(x11)~.,data=pine,10,typeVC="standard")$CVinfos
pineNAX21 <- pine
pineNAX21[1,2] <- NA
bbb2 <- PLS_glm_kfoldcv_formula(x11~.,data=pineNAX21,nt=10,modele="pls-glm-family",family=Gamma(),K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bbb2 <- PLS_glm_kfoldcv_formula(x11~.,data=pineNAX21,nt=10,modele="pls-glm-Gamma",K=10,keepcoeffs=TRUE,keepfolds=FALSE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
kfolds2CVinfos_glm(bbb2)
PLS_lm_formula(log(x11)~.,data=pineNAX21,10,typeVC="standard")$CVinfos
rm(list=c("pineNAX21","bbb","bbb2"))
data(Cornell)
bbb <- PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=10,NK=1,modele="pls")
kfolds2CVinfos_glm(bbb)
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-inverse.gaussian",K=12)
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=inverse.gaussian,K=12)
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-inverse.gaussian",K=6,NK=2,random=TRUE,keepfolds=TRUE)$results_kfolds
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=inverse.gaussian(),K=6,NK=2,random=TRUE,keepfolds=TRUE)$results_kfolds
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-inverse.gaussian",K=6,NK=2,random=FALSE,keepfolds=TRUE)$results_kfolds
PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=3,modele="pls-glm-family",family=inverse.gaussian(link = "1/mu^2"),K=6,NK=2,random=FALSE,keepfolds=TRUE)$results_kfolds
bbb2 <- PLS_glm_kfoldcv_formula(Y~.,data=Cornell,nt=10,modele="pls-glm-inverse.gaussian",keepcoeffs=TRUE)
#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
kfolds2CVinfos_glm(bbb2)
PLS_lm_formula(log(Y)~.,data=Cornell,10,typeVC="standard")$CVinfos
rm(list=c("bbb","bbb2"))
data(bordeaux)
bbb <- PLS_glm_kfoldcv_formula(Quality~.,data=bordeaux,10,modele="pls-glm-polr",K=7)
kfolds2CVinfos_glm(bbb)
bordeauxNA<-bordeaux
bordeauxNA[1,1] <- NA
bbbNA <- PLS_glm_kfoldcv_formula(Quality~Temperature+Sunshine+Heat+Rain,data=bordeauxNA,10,modele="pls-glm-polr",K=10)
kfolds2CVinfos_glm(bbbNA)
rm(list=c("bbb","bbbNA"))
bbb2 <- PLS_glm_kfoldcv_formula(Quality~.,data=bordeaux,nt=2,K=7,modele="pls-glm-polr",method="logistic")
bbb3 <- PLS_glm_kfoldcv_formula(Quality~.,data=bordeaux,nt=2,K=7,modele="pls-glm-polr",method="probit")
bbb4 <- PLS_glm_kfoldcv_formula(Quality~.,data=bordeaux,nt=2,K=7,modele="pls-glm-polr",method="cloglog")
bbb5 <- PLS_glm_kfoldcv_formula(Quality~.,data=bordeaux,nt=2,K=7,modele="pls-glm-polr",method="cauchit")
kfolds2CVinfos_glm(bbb2)
kfolds2CVinfos_glm(bbb3)
kfolds2CVinfos_glm(bbb4)
kfolds2CVinfos_glm(bbb5)
rm(list=c("bbb","bbbNA","bbb2","bbb3","bbb4","bbb5"))
Run the code above in your browser using DataLab