data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
PLS_glm_wvc(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-gaussian",dataPredictY=XCornell[1,])
PLS_glm_wvc(dataY=yCornell[-1],dataX=XCornell[-1,],nt=3,modele="pls-glm-gaussian",dataPredictY=XCornell[1,])
rm("XCornell","yCornell")
## With an incomplete dataset (X[1,2] is NA)
data(pine)
ypine <- pine[,11]
data(XpineNAX21)
PLS_glm_wvc(dataY=ypine,dataX=XpineNAX21,nt=10,modele="pls-glm-gaussian")
rm("XpineNAX21","ypine")
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
PLS_glm(yaze_compl,Xaze_compl,10,modele="pls-glm-logistic",typeVC="none")$InfCrit
PLS_glm_wvc(yaze_compl,Xaze_compl,10,modele="pls-glm-logistic", keepcoeffs=TRUE)
rm("Xaze_compl","yaze_compl")
Run the code above in your browser using DataLab