data(Cornell)
PLS_lm_kfoldcv_formula(Y~.,Cornell,nt=3,K=12,keepfolds=TRUE)
PLS_lm_kfoldcv_formula(Y~.,Cornell,nt=3,K=12,keepfolds=FALSE)
PLS_lm_kfoldcv_formula(Y~.,Cornell,nt=3,K=6,NK=2,random=FALSE,keepfolds=TRUE)
PLS_lm_kfoldcv_formula(Y~.,Cornell,nt=3,K=6,NK=2,random=TRUE,keepfolds=TRUE)
PLS_lm_kfoldcv_formula(Y~.,Cornell,nt=3,keepcoeffs=TRUE,keepfolds=TRUE)
PLS_lm_kfoldcv_formula(Y~.,Cornell,nt=3,keepcoeffs=TRUE,keepfolds=FALSE)
bbb <- PLS_lm_kfoldcv_formula(Y~scale(as.matrix(Cornell))[,-8],Cornell,nt=6,K=12,NK=1)
bbb2 <- PLS_lm_kfoldcv_formula(Y~scale(as.matrix(Cornell))[,-8],Cornell,nt=6,K=6,NK=1)
kfolds2CVinfos_lm(bbb)
kfolds2CVinfos_lm(bbb2)
PLS_lm_formula(Y~.,Cornell,6,typeVC="standard")$CVinfos
rm(list=c("bbb","bbb2"))
data(pine)
bbb <- PLS_lm_kfoldcv_formula(log(x11)~.,pine,nt=10,K=12,NK=1)
bbb2 <- PLS_lm_kfoldcv_formula(log(x11)~.,pine,nt=10,K=6,NK=1)
kfolds2CVinfos_lm(bbb)
kfolds2CVinfos_lm(bbb2)
PLS_lm_formula(log(x11)~.,pine,10,typeVC="standard")$CVinfos
pineNAX21 <- pine
pineNAX21[1,2] <- NA
bbbNA <- PLS_lm_kfoldcv_formula(log(x11)~.,pineNAX21,nt=10,K=12,NK=1)
bbbNA2 <- PLS_lm_kfoldcv_formula(log(x11)~.,pineNAX21,nt=10,K=6,NK=1)
kfolds2CVinfos_lm(bbbNA)
kfolds2CVinfos_lm(bbbNA2)
PLS_lm_formula(log(x11)~.,pineNAX21,10,typeVC="standard")$CVinfos
rm(list=c("bbb","bbb2","bbbNA","bbbNA2"))
Run the code above in your browser using DataLab