
Parzen's kernel mode estimator is the value maximizing the kernel density estimate.
parzen(x,
bw = NULL,
kernel = "gaussian",
abc = FALSE,
par = shorth(x),
optim.method = "BFGS",
...)
numeric. Vector of observations.
numeric. The smoothing bandwidth to be used.
character. The kernel to be used. Available kernels are
"biweight"
, "cosine"
, "eddy"
, "epanechnikov"
,
"gaussian"
, "optcosine"
, "rectangular"
, "triangular"
, "uniform"
.
See density.default
for more details on some of these kernels.
logical. If FALSE
(the default), the kernel density estimate
is maximised using optim
.
numeric. The initial value used in optim
.
character. If abc = FALSE
, the method used in optim
.
if abc = FALSE
, further arguments to be passed to optim
.
parzen
returns a numeric value, the mode estimate. If abc = TRUE
,
the x
value maximizing the density estimate is returned. Otherwise,
the optim
method is used to perform maximization, and the
attributes: 'value', 'counts', 'convergence' and 'message', coming from
the optim
method, are added to the result.
If kernel = "uniform"
, the naive
mode estimate is returned.
Parzen E. (1962). On estimation of a probability density function and mode. Ann. Math. Stat., 33(3):1065--1076.
Konakov V.D. (1973). On the asymptotic normality of the mode of multidimensional distributions. Theory Probab. Appl., 18:794-803.
Eddy W.F. (1980). Optimum kernel estimators of the mode. Ann. Statist., 8(4):870-882.
Eddy W.F. (1982). The Asymptotic Distributions of Kernel Estimators of the Mode. Z. Wahrsch. Verw. Gebiete, 59:279-290.
Romano J.P. (1988). On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist., 16(2):629-647.
Abraham C., Biau G. and Cadre B. (2003). Simple Estimation of the Mode of a Multivariate Density. Canad. J. Statist., 31(1):23-34.
Abraham C., Biau G. and Cadre B. (2004). On the Asymptotic Properties of a Simple Estimate of the Mode. ESAIM Probab. Stat., 8:1-11.
# NOT RUN {
# Unimodal distribution
x <- rlnorm(10000, meanlog = 3.4, sdlog = 0.2)
## True mode
lnormMode(meanlog = 3.4, sdlog = 0.2)
## Estimate of the mode
M <- mlv(x, method = "kernel", kernel = "gaussian", bw = 0.3, par = shorth(x))
print(M)
plot(M)
# }
Run the code above in your browser using DataLab