library(spatstat)
 data(nztrees)
 mpl(nztrees, ~1, Poisson())
 # fit the stationary Poisson process to 'nztrees'
 # no edge correction needed
 data(longleaf)
 longadult <- longleaf[longleaf$marks >= 30, ]
 longadult <- unmark(longadult)
 mpl(longadult, ~ x, Poisson())
 # fit the nonstationary Poisson process 
 # with intensity lambda(x,y) = exp( a + bx)
 data(lansing)
 # trees marked by species
 mpl(lansing, ~ marks, Poisson())
 # fit stationary marked Poisson process
 # with different intensity for each species
mpl(lansing, ~ marks * polynom(x,y,3), Poisson())
 # fit nonstationary marked Poisson process
 # with different log-cubic trend for each species
<testonly># equivalent functionality - smaller dataset
 data(ganglia)
 mpl(ganglia, ~ marks * polynom(x,y,2), Poisson())</testonly>Run the code above in your browser using DataLab