data(nztrees)
 ppm(nztrees, ~1, Poisson())
 # fit the stationary Poisson process to 'nztrees'
 # no edge correction needed
 data(longleaf)
 <testonly>longleaf <- longleaf[seq(1, longleaf$n, by=50)]</testonly>
 longadult <- longleaf[longleaf$marks >= 30, ]
 longadult <- unmark(longadult)
 ppm(longadult, ~ x, Poisson())
 # fit the nonstationary Poisson process 
 # with intensity lambda(x,y) = exp( a + bx)
 data(lansing)
 # trees marked by species
 <testonly>lansing <- lansing[seq(1,lansing$n, by=30), ]</testonly>
 ppm(lansing, ~ marks, Poisson())
 # fit stationary marked Poisson process
 # with different intensity for each species
ppm(lansing, ~ marks * polynom(x,y,3), Poisson())
 # fit nonstationary marked Poisson process
 # with different log-cubic trend for each species
<testonly># equivalent functionality - smaller dataset
 data(betacells)
 ppm(betacells, ~ marks * polynom(x,y,2), Poisson())</testonly>Run the code above in your browser using DataLab