####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
data(PolyData)
genotypes <- PolyData$PGeno
phenotypes <- PolyData$PPheno
####=========================================####
####### convert markers to numeric format
####=========================================####
#numo <- atcg1234(data=genotypes, ploidy=4); numo[1:5,1:5]; dim(numo)
####=========================================####
####### plants with both genotypes and phenotypes
####=========================================####
#common <- intersect(phenotypes$Name,rownames(numo))
####=========================================####
#### get the markers and phenotypes for such inds
####=========================================####
#marks <- numo[common,]; marks[1:5,1:5]
#phenotypes2 <- phenotypes[match(common,phenotypes$Name),];
#phenotypes2[1:5,1:5]
####=========================================####
#### response variable
####=========================================####
#yy <- phenotypes2$tuber_shape
#set.seed(1234)
#ww <- sample(1:187,38)
#yy.trn <- yy; yy.trn[ww] <- NA
####=========================================####
####### Additive relationship matrix, specify ploidy
####=========================================####
#K1 <- A.mat(marks, ploidy=4); dim(K1);K1[1:5,1:5]
####=========================================####
#### Incidence matrix for genotypes
####=========================================####
#Z1 <- diag(length(yy))
####=========================================####
#### double check all dimensions
####=========================================####
#dim(Z1); dim(K1); length(yy)
#ETA <- list(add=list(Z=Z1, K=K1)) # random effects for genotypes
####=========================================####
#### run the genomic selection model
####=========================================####
#ans <- mmer(Y=yy.trn, Z=ETA)
#cor(yy[ww],ans$fitted.y[ww])
#summary(ans)
####=========================================####
#### run it as GWAS model
####=========================================####
#my.map <- PolyData$map
#models <- c("additive","1-dom-alt","1-dom-ref","2-dom-alt","2-dom-ref")
#ans2 <- mmer(Y=yy.trn, Z=ETA, W=marks,
# ploidy=4, models=models[1], map=my.map)
#summary(ans2)
####=========================================####
#### compare to GWAS including dominance
####=========================================####
#D <- D.mat(marks)
#E <- E.mat(marks)
#ETA.AD <- list(add=list(Z=Z1, K=K1),dom=list(Z=Z1, K=D))
#ans3 <- mmer(Y=yy.trn, Z=ETA.AD, W=marks,
# ploidy=4, models=models[1], map=my.map)
#summary(ans3)
Run the code above in your browser using DataLab