Last chance! 50% off unlimited learning
Sale ends in
PowerGivenJK(J, K, varYTR, varYTC, varYEps, cov1, cov2, cov3, varEps, msTR,
KStar, alpha = 0.05, effectSize = 0.05, randomOption = "ALL")
ALL
, READERS
or CASES
, which indicate predictions for (1) random readers and random cases, (2) random readers only and
(3) random cases only.varYTR
, varYTC
, and varYEps
) or
OR variance components (cov1
, cov2
, cov3
, varEps
, msTR
and KStar
) should be specified.
If both of them are given, DBM variance components are used and OR variance components are ignored.Hillis, S. L., Obuchowski, N. a, Schartz, K. M., & Berbaum, K. S. (2005). A comparison of the Dorfman-Berbaum-Metz and Obuchowski-Rockette methods for receiver operating characteristic (ROC) data. Statistics in Medicine, 24(10), 1579-607.
## Following is an example of sample size calculation with DBM variance componements.
retDbm <- DBMHAnalysis(data = rocData, fom = "Wilcoxon")
effectSize <- retDbm$ciDiffTrtRRRC$Estimate
varCompDBM <- retDbm$varComp
varYTR <- varCompDBM$varComp[3]
varYTC <- varCompDBM$varComp[4]
varYEps <- varCompDBM$varComp[6]
PowerGivenJK(J = 6, K = 251, varYTR = varYTR, varYTC = varYTC,
varYEps = varYEps, effectSize = effectSize)
## Following is an example of sample size calculation with OR variance componements.
retOR <- ORHAnalysis(data = rocData, fom = "Wilcoxon", covEstMethod = "Jackknife")
effectSize <- retDbm$ciDiffTrtRRRC$Estimate
varCompOR <- retOR$varComp
cov1 <- varCompOR$varCov[3]
cov2 <- varCompOR$varCov[4]
cov3 <- varCompOR$varCov[5]
varEps <- varCompOR$varCov[6]
KStar <- length(rocData$NL[1,1,,1])
msTR <- retOR$msTR
PowerGivenJK(J = 6, K = 251, cov1 = cov1, cov2 = cov2, cov3 = cov3,
varEps = varEps, msTR = msTR, KStar = KStar, effectSize = effectSize)
Run the code above in your browser using DataLab