Changes lists recent changes made to the package. Version 3 of the package has some major changes from Version 2, and code for Version 2 will not work in Version 3 without modification. Some examples giving the old code and the required new code are given in the topic Changes. Changes made in Version 3 enable one to fit a more general class of model.mpp. This model can be simulated or fitted to data by defining the required model structure within an object of class "mpp".linksrm. This model is slightly peculiar, and doesn't fit naturally in the mpp framework.simulate.neglogLik.residuals.summary.logLik.plot.Baddeley, A. (2008). Open source software for spatial statistics. URL: http://www.spatstat.org/.
Baddeley, A. & Turner, R. (2005). Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software 12(6), 1--42. URL: http://www.jstatsoft.org/v12/i6/.
Baddeley, A.; Turner, R.; Moller, J. & Hazelton, M. (2005a). Residual analysis for spatial point processes (with discussion). J. R. Statist. Soc. B 67(5), 617--666. DOI: http://dx.doi.org/10.1111/j.1467-9868.2005.00519.x.
Bebbington, M.S. & Harte, D.S. (2001). On the statistics of the linked stress release model. Journal of Applied Probability 38A, 176--187. DOI: http://dx.doi.org/10.1239/jap/1085496600.
Bebbington, M.S. & Harte, D.S. (2003). The linked stress release model for spatio-temporal seismicity: formulations, procedures and applications. Geophysical Journal International 154, 925--946. DOI: http://dx.doi.org/10.1046/j.1365-246X.2003.02015.x.
Brownrigg, R. & Harte, D.S. (2005). Using R for statistical seismology. R News 5(1), 31--35. URL: http://cran.r-project.org/doc/Rnews/Rnews_2005-1.pdf
Daley, D.J. & Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. Second Edition. Springer-Verlag, New York. URL: http://books.google.com/?isbn=0387955410.
Daley, D.J. & Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure. Second Edition. Springer-Verlag, New York. URL: http://books.google.com/?isbn=9780387213378.
Harte, D. (1998). Documentation for the Statistical Seismology Library. School of Mathematical and Computing Sciences Research Report No. 98--10 (Updated Edition June 1999), Victoria University of Wellington. (ISSN 1174--4545)
Harte, D. (2010). PtProcess: An R package for modelling marked point processes indexed by time. Journal of Statistical Software 35(8), 1--32. URL: http://www.jstatsoft.org/v35/i08/.
Kagan, Y. & Schoenberg, F. (2001). Estimation of the upper cutoff parameter for the tapered Pareto distribution. Journal of Applied Probability 38A, 158--175. DOI: http://dx.doi.org/10.1239/jap/1085496599.
Lewis, P.A.W. & Shedler, G.S. (1979). Simulation of nonhomogeneous Poisson processes by thinning. Naval Research Logistics Quarterly 26(3), 403--413. DOI: http://dx.doi.org/10.1002/nav.3800260304
Ogata, Y. (1981). On Lewis' simulation method for point processes. IEEE Transactions on Information Theory 27(1), 23--31. DOI: http://dx.doi.org/10.1109/TIT.1981.1056305.
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. J. Amer. Statist. Assoc. 83(401), 9--27. DOI: http://dx.doi.org/10.2307/2288914.
Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Ann. Instit. Statist. Math. 50(2), 379--402. DOI: http://dx.doi.org/10.1023/A:1003403601725.
Ogata, Y. (1999). Seismicity analysis through point-process modeling: a review. Pure and Applied Geophysics 155, 471--507. DOI: http://dx.doi.org/10.1007/s000240050275.
Ogata, Y. & Zhuang, J.C. (2006). Space-time ETAS models and an improved extension. Tectonophysics 413(1-2), 13--23. DOI: http://dx.doi.org/10.1016/j.tecto.2005.10.016.
Peng, R. (2002). Multi-dimensional Point Process Models. Package ptproc, URL: http://www.biostat.jhsph.edu/~rpeng.
Peng, R. (2003). Multi-dimensional point process models in R. Journal of Statistical Software 8(16), 1--27. URL: http://www.jstatsoft.org/v8/i16/.
Reid, H.F. (1910). The mechanism of the earthquake. In The California Earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission 2, 16--28. Carnegie Institute of Washington, Washington D.C.
Utsu, T. and Ogata, Y. (1997). Statistical analysis of seismicity. In: Algorithms for Earthquake Statistics and Prediction (Edited by: J.H. Healy, V.I. Keilis-Borok and W.H.K. Lee), pp 13--94. IASPEI, Menlo Park CA.
Vere-Jones, D. (1978). Earthquake prediction - a statistician's view. Journal of Physics of the Earth 26, 129--146.
Vere-Jones, D.; Robinson, R. & Yang, W. (2001). Remarks on the accelerated moment release model: problems of model formulation, simulation and estimation. Geophysical Journal International 144(3), 517--531. DOI: http://dx.doi.org/10.1046/j.1365-246x.2001.01348.x .
Zheng, X.-G. & Vere-Jones, D. (1991). Application of stress release models to historical earthquakes from North China. Pure and Applied Geophysics 135(4), 559--576. DOI: http://dx.doi.org/10.1007/BF01772406.
Zhuang, J.C. (2006). Second-order residual analysis of spatiotemporal point processes and applications in model evaluation. J. R. Statist. Soc. B 68(4), 635--653. DOI: http://dx.doi.org/10.1111/j.1467-9868.2006.00559.x.