Last chance! 50% off unlimited learning
Sale ends in
Compute estimates of an extreme quantile
QuantMOM(data, gamma, p, plot = FALSE, add = FALSE,
main = "Estimates of extreme quantile", ...)
Vector of
Vector of Moment
.
The exceedance probability of the quantile (we estimate
Logical indicating if the estimates should be plotted as a function of FALSE
.
Logical indicating if the estimates should be added to an existing plot, default is FALSE
.
Title for the plot, default is "Estimates of extreme quantile"
.
Additional arguments for the plot
function, see plot
for more details.
A list with following components:
Vector of the values of the tail parameter
Vector of the corresponding quantile estimates.
The used exceedance probability.
See Section 4.2.2 of Albrecher et al. (2017) for more details.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Dekkers, A.L.M, Einmahl, J.H.J. and de Haan, L. (1989). "A Moment Estimator for the Index of an Extreme-value Distribution." Annals of Statistics, 17, 1833--1855.
# NOT RUN {
data(soa)
# Look at last 500 observations of SOA data
SOAdata <- sort(soa$size)[length(soa$size)-(0:499)]
# MOM estimator
M <- Moment(SOAdata)
# Large quantile
p <- 10^(-5)
QuantMOM(SOAdata, p=p, gamma=M$gamma, plot=TRUE)
# }
Run the code above in your browser using DataLab