lm
, that is used to fit linear models.R2.lm (x)
prt.lm (x)
mantel.lm (x, Nperm = 1000)
vif.lm (x)
RMSE.lm (x)
MAE.lm (x)
predinterval.lm (x, level = 0.95)
jackknife1.lm (x)
RMSEjk.lm (x)
MAEjk.lm (x)
R2.lm
returns the coefficient of determination $R^2$ and the adjusted coefficient of determination $R^2_{adj}$ of the regression. prt.lm
returns the probability $Pr(>|t|)$ of the significance test (Student t) of the independent variables.
If the value is 0.06 for a regressor, its coefficient is not significantly different from 0 for a test with significance level of 5
mantel.lm
returns the probability $P$ of the Mantel test on every variable conditionated to the others.
It substitutes prt.lm
when dealing with distance matrices.
If $P$ is, for example, 0.92, the variable should be considered significant with significance level greater of 8
vif.lm
returns the variance inflation factors (VIF) of the independent values of the regression. If $VIF > 5$ (or 10) there is a problem of multicollinearity.
RMSE.lm
returns the root mean squared error of the regression.
MAE.lm
returns the mean absolute error of the regression.
predinterval.lm
returns the prediction intervals at a specified level
in correspondence to the fitted data.
jackknife1.lm
returns predicted values by a jackknife (cross-validation) procedure.
The procedure (remove 1 observation, fit the model, estimate in the removed point) is repeated for all the points.
RMSEjk.lm
returns the root mean squared error of the cross-validation (performed with jackknife1.lm
).
MAEjk.lm
returns the mean absolute error of the cross-validation (performed with jackknife1.lm
).
Viglione A., Claps P., Laio F. (2006) Water resources assessment and management under water scarcity scenarios, chapter Meanannual runoff estimation in North-Western Italy. CDSU, Milan.
lm
, summary.lm
, predict.lm
data(hydroSIMN)
D <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
#Dm <- tapply(D,cod,mean)
#datregr <- cbind(Dm,parameters)
datregr <- parameters
regr0 <- lm(Dm ~ .,datregr); summary(regr0)
regr1 <- lm(Dm ~ Am + Hm + Ybar,datregr); summary(regr1)
R2.lm(regr0)
R2.lm(regr1)
prt.lm(regr0)
prt.lm(regr1)
vif.lm(regr0)
vif.lm(regr1)
RMSE.lm(regr0)
RMSE.lm(regr1)
MAE.lm(regr0)
MAE.lm(regr1)
predinterval.lm(regr0)
jackknife1.lm(regr0)
jackknife1.lm(regr1)
RMSEjk.lm(regr0)
RMSEjk.lm(regr1)
MAEjk.lm(regr0)
MAEjk.lm(regr1)
# mantel test on distance matrices
#Y <- AD.dist(D,cod) # it takes some time
#X <- data.frame(apply(datregr[,c("Hm","Ybar")],2,dist))
#dati <- cbind(as.numeric(Y),X)
#modello <- lm(Y ~ Hm + Ybar, dati)
#mantel.lm(modello, Nperm=100)
Run the code above in your browser using DataLab