RMgengneiting
is a stationary isotropic covariance model family whose elements
are specified by the two parameters $\kappa$ and $\mu$ with $n$ a non-negative integer and
$\mu \ge d/2$ with $d$ denoting the dimension of the random field
(the models can be used for any dimension).
A corresponding covariance function only depends on the distance $r \ge 0$ between
two points. For the case $\kappa = 0$ the Gneiting-Wendland model
equals the Askey model RMaskey
,
RMgneiting
.
$\ell$
RMgengneiting(kappa, mu, var, scale, Aniso, proj)
mu
has to be greater than or equal to
$d / 2$ where $d$ is the dimension of the
random field.RMmodel
. If not passed, the above
covariance function remains unmodified.RMgengneiting
returns an object of class RMmodel
A special case of this family is RMgneiting
(with $s = 1$ there) for the choice $\kappa = 3, \mu = 3/2$.
RMaskey
,
RMbigneiting
,
RMgneiting
,
RMmodel
,
RFsimulate
,
RFfit
.
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
model <- RMgengneiting(kappa=1, mu=1.5)
x <- seq(0, 10, 0.02)
plot(model)
plot(RFsimulate(model, x=x))
## same models:
model2 <- RMgengneiting(kappa=3, mu=1.5, scale= 1 / 0.301187465825)
plot(RMgneiting(), model2=model2, type=c("p", "l"), pch=20)
Run the code above in your browser using DataLab