Last chance! 50% off unlimited learning
Sale ends in
RODM_create_assoc_model(database, data_table_name, case_id_column_name, model_name = "AR_MODEL", min_support = NULL, min_confidence = NULL, max_rule_length = NULL, retrieve_outputs_to_R = TRUE, leave_model_in_dbms = TRUE, sql.log.file = NULL)
For more details on the algotithm implementation, parameters settings and characteristics of the ODM function itself consult the following Oracle documents: ODM Concepts, ODM Developer's Guide, Oracle SQL Packages: Data Mining, and Oracle Database SQL Language Reference (Data Mining functions), listed in the references below.
Oracle Data Mining Application Developer's Guide 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28131/toc.htm
Oracle Data Mining Administrator's Guide 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28130/toc.htm
Oracle Database PL/SQL Packages and Types Reference 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_datmin.htm#ARPLS192
RODM_drop_model
## Not run:
# DB <- RODM_open_dbms_connection(dsn="orcl11g", uid= "rodm", pwd = "rodm")
#
# data(satfruit, package="PASWR")
# ards <- satfruit[,c("WH", "BA", "NAR", "COR", "SF", "VI", "PS", "ES", "AF", "CO", "AR", "AL", "OL")] # Select subset of attributes
# ards[,] <- ifelse(ards[,] == 0, NA, "YES") # make it sparse, as required by ODM
# n.rows <- length(ards[,1]) # Number of rows
# row.id <- matrix(seq(1, n.rows), nrow=n.rows, ncol=1, dimnames= list(NULL, c("ROW_ID"))) # Row id
# ards <- cbind(row.id, ards) # Add row id to dataset
# RODM_create_dbms_table(DB, "ards") # Push the training table to the database
#
# # Build the association rules model
# ar <- RODM_create_assoc_model(
# database = DB,
# data_table_name = "ards",
# case_id_column_name = "ROW_ID")
#
# # Inspect the contents of ar to find the rules and itemsets
#
# RODM_drop_model(DB, "AR_MODEL")
# RODM_drop_dbms_table(DB, "ards")
#
# RODM_close_dbms_connection(DB)
# ## End(Not run)
Run the code above in your browser using DataLab