Learn R Programming

RODM (version 1.1)

RODM_create_glm_model: Create an ODM Generalized Linear Model

Description

This function creates an ODM generalized linear model.

Usage

RODM_create_glm_model(database, data_table_name, case_id_column_name = NULL, target_column_name, model_name = "GLM_MODEL", mining_function = "classification", auto_data_prep = TRUE, class_weights = NULL, weight_column_name = NULL, conf_level = NULL, reference_class_name = NULL, missing_value_treatment = NULL, ridge_regression = NULL, ridge_value = NULL, vif_for_ridge = NULL, diagnostics_table_name = NULL, retrieve_outputs_to_R = TRUE, leave_model_in_dbms = TRUE, sql.log.file = NULL)

Arguments

database
Database ODBC channel identifier returned from a call to RODM_open_dbms_connection
data_table_name
Database table/view containing the training dataset.
case_id_column_name
Row unique case identifier in data_table_name.
target_column_name
Target column name in data_table_name.
model_name
ODM Model name.
mining_function
Type of mining function for GLM model: "classification" (default) or "regression".
auto_data_prep
Whether or not ODM should invoke automatic data preparation for the build.
class_weights
User-specified weights for the target classes.
weight_column_name
Name of a column in data_table_name that contains a weighting factor for the rows. Row weights can be used as a compact representation of repeated rows, and can also be used to emphasize certain rows during model construction.
conf_level
The confidence level for coefficient confidence intervals.
reference_class_name
The target value to be used as the reference value in a logistic regression model. Probabilities will be produced for the other (non-reference) class. By default, the algorithm chooses the value with the highest prevalence (the most cases) for the reference class.
missing_value_treatment
How to handle missing values. Either replace by the mean or mode by setting ODMS_MISSING_VALUE_MEAN_MODE, or delete the entire row when a missing value is present by setting ODMS_MISSING_VALUE_DELETE_ROW.
ridge_regression
Whether or not ridge regression will be enabled. By default, the algorithm determines whether or not to use ridge. You can explicitly enable ridge by setting GLMS_RIDGE_REGRESSION to GLMS_RIDGE_REG_ENABLE. Ridge applies to both regression and classification mining functions. When ridge is enabled, no prediction bounds are produced by the PREDICTION_BOUNDS SQL operator.
ridge_value
The value for the ridge parameter used by the algorithm. This setting is only used when you explicitly enable ridge regression by setting GLMS_RIDGE_REGRESSION to GLMS_RIDGE_REG_ENABLE. If ridge regression is enabled internally by the algorithm, the ridge parameter is determined by the algorithm.
vif_for_ridge
(Linear regression only) Whether or not to produce Variance Inflation Factor (VIF) statistics when ridge is being used. By default, VIF is not produced when ridge is enabled.When you explicitly enable ridge regression by setting GLMS_RIDGE_REGRESSION to GLMS_RIDGE_REG_ENABLE, you can request VIF statistics by setting GLMS_VIF_FOR_RIDGE to GLMS_VIF_RIDGE_ENABLE; the algorithm will produce VIF if enough system resources are available.
diagnostics_table_name
Non-existing database table to hold per-row diagnostic information. Requires a case_id_column_name to be specified. The table will remain in the database and must be dropped explicitly when desired.
retrieve_outputs_to_R
Flag controlling if the output results are moved to the R environment.
leave_model_in_dbms
Flag controlling if the model is deleted or left in RDBMS.
sql.log.file
File where to append the log of all the SQL calls made by this function.

Value

If retrieve_outputs_to_R is TRUE, returns a list with the following elements:
model.model_settings
Table of settings used to build the model.
model.model_attributes
Table of attributes used to build the model.
glm.globals
Global details for the GLM model.
glm.coefficients
The coefficients of the GLM model, along with more per-attribute information.

Details

Generalized linear models (GLM) implements logistic regression for classification of binary targets and linear regression for continuous targets. GLM classification supports confidence bounds for prediction probabilities. GLM regression supports confidence bounds for predictions and supports linear and logistic regression with the logit link and binomial variance functions. Ridge regression is a technique that compensates for multicollinearity. Oracle Data Mining supports ridge regression for both regression and classification mining functions. The algorithm automatically uses ridge if it detects singularity (exact multicollinearity) in the data.

For more details on the algotithm implementation, parameters settings and characteristics of the ODM function itself consult the following Oracle documents: ODM Concepts, ODM Developer's Guide, Oracle SQL Packages: Data Mining, and Oracle Database SQL Language Reference (Data Mining functions), listed in the references below.

References

Dobson, Annette J. and Barnett, Adrian G. (2008) An Introduction to Generalized Linear Models, Third Edition. Texts in Statistical Science ,77 . Chapman & Hall/CRC Press, Boca Raton, FL.

B. L. Milenova, J. S. Yarmus, and M. M. Campos. SVM in oracle database 10g: removing the barriers to widespread adoption of support vector machines. In Proceedings of the ''31st international Conference on Very Large Data Bases'' (Trondheim, Norway, August 30 - September 02, 2005). pp1152-1163, ISBN:1-59593-154-6.

Milenova, B.L. Campos, M.M., Mining high-dimensional data for information fusion: a database-centric approach 8th International Conference on Information Fusion, 2005. Publication Date: 25-28 July 2005. ISBN: 0-7803-9286-8. John Shawe-Taylor & Nello Cristianini. Support Vector Machines and other kernel-based learning methods. Cambridge University Press, 2000.

Oracle Data Mining Concepts 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28129/toc.htm

Oracle Data Mining Application Developer's Guide 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28131/toc.htm

Oracle Data Mining Administrator's Guide 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28130/toc.htm

Oracle Database PL/SQL Packages and Types Reference 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28419/d_datmin.htm#ARPLS192

Oracle Database SQL Language Reference (Data Mining functions) 11g Release 1 (11.1) http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/functions001.htm#SQLRF20030

See Also

RODM_apply_model, RODM_drop_model

Examples

Run this code
## Not run: 
# DB <- RODM_open_dbms_connection(dsn="orcl11g", uid= "rodm", pwd = "rodm")
# 
# ### GLM Classification
# 
# # Predicting survival in the sinking of the Titanic based on pasenger's sex, age, class, etc.
# 
# data(titanic3, package="PASWR")                                             # Load survival data from Titanic
# ds <- titanic3[,c("pclass", "survived", "sex", "age", "fare", "embarked")]  # Select subset of attributes
# ds[,"survived"] <- ifelse(ds[,"survived"] == 1, "Yes", "No")                # Rename target values
# n.rows <- length(ds[,1])                                                    # Number of rows
# random_sample <- sample(1:n.rows, ceiling(n.rows/2))   # Split dataset randomly in train/test subsets
# titanic_train <- ds[random_sample,]                         # Training set
# train.rows <- length(titanic_train[,1])                                                    # Number of rows
# row.id <- matrix(seq(1, train.rows), nrow=train.rows, ncol=1, dimnames= list(NULL, c("ROW_ID"))) # Row id
# titanic_train <- cbind(row.id, titanic_train)                                                     # Add row id to dataset 
# titanic_test <-  ds[setdiff(1:n.rows, random_sample),]      # Test set
# RODM_create_dbms_table(DB, "titanic_train")   # Push the training table to the database
# RODM_create_dbms_table(DB, "titanic_test")    # Push the testing table to the database
# 
# # Weight one class more heavily than the other
# weights <- data.frame(
#             target_value = c("Yes", "No"),
#             class_weight = c(1, 10))
# 
# glm <- RODM_create_glm_model(database = DB,    # Create ODM GLM classification model
#                              data_table_name = "titanic_train", 
#                              case_id_column_name = "ROW_ID",
#                              target_column_name = "survived", 
#                              model_name = "GLM_MODEL",
#                              class_weights = weights,
#                              diagnostics_table_name = "GLM_DIAG",
#                              mining_function = "classification")
# 
# glm2 <- RODM_apply_model(database = DB,    # Predict test data
#                          data_table_name = "titanic_test", 
#                          model_name = "GLM_MODEL",
#                          supplemental_cols = "survived")
# 
# print(glm2$model.apply.results[1:10,])                                  # Print example of prediction results
# actual <- glm2$model.apply.results[, "SURVIVED"]                
# predicted <- glm2$model.apply.results[, "PREDICTION"]                
# probs <- as.real(as.character(glm2$model.apply.results[, "'Yes'"]))       
# table(actual, predicted, dnn = c("Actual", "Predicted"))              # Confusion matrix
# library(verification)
# perf.auc <- roc.area(ifelse(actual == "Yes", 1, 0), probs)            # Compute ROC and plot
# auc.roc <- signif(perf.auc$A, digits=3)
# auc.roc.p <- signif(perf.auc$p.value, digits=3)
# roc.plot(ifelse(actual == "Yes", 1, 0), probs, binormal=T, plot="both", xlab="False Positive Rate", 
#          ylab="True Postive Rate", main= "Titanic survival ODM GLM model ROC Curve")
# text(0.7, 0.4, labels= paste("AUC ROC:", signif(perf.auc$A, digits=3)))
# text(0.7, 0.3, labels= paste("p-value:", signif(perf.auc$p.value, digits=3)))
# 
# glm       # look at the model details
# 
# # access and look at the per-row diagnostics from model training
# diaginfo <- sqlQuery(DB, query = "SELECT * FROM GLM_DIAG")
# diaginfo
# 
# RODM_drop_model(DB, "GLM_MODEL")            # Drop the model
# RODM_drop_dbms_table(DB, "GLM_DIAG")        # Drop the diagnostics table
# RODM_drop_dbms_table(DB, "titanic_train")   # Drop the database table
# RODM_drop_dbms_table(DB, "titanic_test")    # Drop the database table
# ## End(Not run)

### GLM Regression
## Not run: 
# x1 <- 2 * runif(200) 
# noise <- 3 * runif(200) - 1.5
# y1 <- 2 + 2*x1 + x1*x1 + noise
# dataset <- data.frame(x1, y1)
# names(dataset) <- c("X1", "Y1")
# RODM_create_dbms_table(DB, "dataset")   # Push the training table to the database
# 
# glm <- RODM_create_glm_model(database = DB,    # Create ODM GLM model
#                              data_table_name = "dataset", 
#                              target_column_name = "Y1",
#                              mining_function = "regression")
# 
# glm2 <- RODM_apply_model(database = DB,    # Predict training data
#                              data_table_name = "dataset",
#                              model_name = "GLM_MODEL",
#                              supplemental_cols = "X1")
# windows(height=8, width=12)
# plot(x1, y1, pch=20, col="blue")
# points(x=glm2$model.apply.results[, "X1"], 
#        glm2$model.apply.results[, "PREDICTION"], pch=20, col="red")
# legend(0.5, 9, legend = c("actual", "GLM regression"), pch = c(20, 20), 
#                 col = c("blue", "red"),
#                 pt.bg =  c("blue", "red"), cex = 1.20, pt.cex=1.5, bty="n")
# 
# RODM_drop_model(DB, "GLM_MODEL")            # Drop the model
# RODM_drop_dbms_table(DB, "dataset")   # Drop the database table
# RODM_close_dbms_connection(DB)
# ## End(Not run)

Run the code above in your browser using DataLab