RadialP2D_1PC(N, R0, t0, T, ThetaMax, K, sigma, output = FALSE)R0 > 0 at time t0.ThetaMax = 2*pi.K > 0.sigma > 0.Output = TRUE write a Output to an Excel (.csv).dW1(t) and dW2(t) are brownian motions independent.
Using Ito transform, it is shown that the Radial Process R(t) with R(t)=||(X(t),Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:
$$dR(t) = ((0.5 * Sigma^2 * R(t)^(S-1) - K)/ R(t)^S )* dt + Sigma* dW(t)$$
If S = 1 (ie M(S=1,Sigma)) the R(t) is :
$$dR(t) = ((0.5*Sigma^2 -K )/R(t) ) * dt + Sigma* dW(t)$$
Where ||.|| is the Euclidean norm and dW(t) is a determined brownian motions.
R(t)=sqrt(X(t)^2 + Y(t)^2) it is distance between X(t) and Y(t), then X(t)=R(t)*cos(theta(t))
and Y(t)=R(t)*sin(theta(t)),
For more detail consulted References.snssde2D, PredCorr2D, RadialP2D_2PC, RadialP3D_1, tho_M1, fctgeneral, hist_general, Kern_meth.RadialP2D_1PC(N=1000, R0=3, t0=0, T=1, ThetaMax=4*pi, K=2, sigma=1,
output = FALSE)Run the code above in your browser using DataLab