RadialP2D_1PC(N, R0, t0, T, ThetaMax, K, sigma, output = FALSE)
R0 > 0
at time t0
.ThetaMax = 2*pi
.K > 0
.sigma > 0
.Output = TRUE
write a Output
to an Excel (.csv).dW1(t)
and dW2(t)
are brownian motions independent.
Using Ito transform, it is shown that the Radial Process R(t)
with R(t)=||(X(t),Y(t))||
is a markovian diffusion, solution of the stochastic differential equation one-dimensional:
$$dR(t) = ((0.5 * Sigma^2 * R(t)^(S-1) - K)/ R(t)^S )* dt + Sigma* dW(t)$$
If S = 1
(ie M(S=1,Sigma)
) the R(t)
is :
$$dR(t) = ((0.5*Sigma^2 -K )/R(t) ) * dt + Sigma* dW(t)$$
Where ||.|| is the Euclidean norm and dW(t)
is a determined brownian motions.
R(t)=sqrt(X(t)^2 + Y(t)^2)
it is distance between X(t)
and Y(t)
, then X(t)=R(t)*cos(theta(t))
and Y(t)=R(t)*sin(theta(t))
,
For more detail consulted References
.snssde2D
, PredCorr2D
, RadialP2D_2PC
, RadialP3D_1
, tho_M1
, fctgeneral
, hist_general
, Kern_meth
.RadialP2D_1PC(N=1000, R0=3, t0=0, T=1, ThetaMax=4*pi, K=2, sigma=1,
output = FALSE)
Run the code above in your browser using DataLab