data(LST)
gridded(LST) <- ~x+y
proj4string(LST) <- CRS("+proj=utm +zone=33 +datum=WGS84 +units=m")
dates <- sapply(strsplit(names(LST), "LST"), function(x){x[[2]]})
datesf <- format(as.Date(dates, "%Y_%m_%d"), "%Y-%m-%dT%H:%M:%SZ")
# begin / end dates +/- 4 days:
TimeSpan.begin = as.POSIXct(unclass(as.POSIXct(datesf))-4*24*60*60, origin="1970-01-01")
TimeSpan.end = as.POSIXct(unclass(as.POSIXct(datesf))+4*24*60*60, origin="1970-01-01")
LST_ll <- reproject(LST)
# pick few climatic stations:
data(HRtemp08)
pnts <- HRtemp08[which(HRtemp08$NAME=="Pazin")[1],]
pnts <- rbind(pnts, HRtemp08[which(HRtemp08$NAME=="Crni Lug - NP Risnjak")[1],])
pnts <- rbind(pnts, HRtemp08[which(HRtemp08$NAME=="Cres")[1],])
coordinates(pnts) <- ~Lon + Lat
proj4string(pnts) <- CRS("+proj=longlat +datum=WGS84")
# get the dates from the file names:
LST_ll <- brick(LST_ll)
LST_ll@title = "Time series of MODIS Land Surface Temperature (8-day mosaics) images"
LST.ts <- new("RasterBrickTimeSeries", variable = "LST",
sampled = pnts, rasters = LST_ll, TimeSpan.begin = TimeSpan.begin, TimeSpan.end = TimeSpan.end)
data(SAGA_pal)
# plot MODIS images in Google Earth:
plotKML(LST.ts, colour_scale=SAGA_pal[[1]])
Run the code above in your browser using DataLab