## Load toy gene expression data
data(toydata)
### class labels
yy <- toydata[1,]
### gene expression
xx <- toydata[-1,]
### Get ranking for the original data set, with the ordinary t-statistic
ordT <- RankingTstat(xx, yy, type="unpaired")
### Generate the leave-one-out / exchange-one-label matrix
loo <- GenerateFoldMatrix(y = yy, k=1)
### Repeat the ranking with the t-statistic, using the leave-one-out scheme
loor_ordT <- RepeatRanking(ordT, loo)
### .. or the label exchange scheme
ex1r_ordT <- RepeatRanking(ordT, loo, scheme = "labelexchange")
### Generate the bootstrap matrix
boot <- GenerateBootMatrix(y = yy, maxties=3, minclassize=5, repl=30)
### Repeat ranking with the t-statistic for bootstrap replicates
boot_ordT <- RepeatRanking(ordT, boot)
### Repeat the ranking procedure for an altered data set with added noise
noise_ordT <- RepeatRanking(ordT, varlist=list(genewise=TRUE, factor=1/10))
Run the code above in your browser using DataLab