## Prepare some data ##
set.seed(254)
mat <- matrix(sample(c(0,1),5000*50,replace=TRUE,prob=c(1-0.15,0.15)),
nrow=5000,ncol=50)
mat[1:200,1:10] <- matrix(sample(c(0,1),200*10,replace=TRUE,prob=c(1-0.9,0.9)),
nrow=200,ncol=10)
mat[300:399,6:15] <- matrix(sample(c(0,1),100*10,replace=TRUE,prob=c(1-0.9,0.9)),
nrow=100,ncol=10)
mat[400:599,21:30] <- matrix(sample(c(0,1),200*10,replace=TRUE,prob=c(1-0.9,0.9)),
nrow=200,ncol=10)
mat[700:799,29:38] <- matrix(sample(c(0,1),100*10,replace=TRUE,prob=c(1-0.9,0.9)),
nrow=100,ncol=10)
mat <- mat[sample(1:5000,5000,replace=FALSE),sample(1:50,50,replace=FALSE)]
## Apply BiBitWorkflow ##
out <- BiBitWorkflow(matrix=mat,minr=50,minc=5,noise=0.2,cut_type="number",cut_pm=4)
## Apply RowTest_Fisher on Biclust Object -> returns Biclust Object ##
out_new <- RowTest_Fisher(result=out$Biclust,matrix=mat)
# FisherResult output in info slot
str(out_new@info$FisherResult)
# FisherInfo output in info slot (comparison with original BC's)
str(out_new@info$FisherInfo)
## Apply RowTest_Fisher on BiBitWorkflow Object -> returns BiBitWorkflow Object ##
out_new2 <- RowTest_Fisher(result=out,matrix=mat)
# FisherResult output in BiBitWorkflow info element
str(out_new2$info$FisherResult)
# Fisher output is added to "NoiseScree" plot
NoiseScree(result=out_new2,matrix=mat,type="Added")
Run the code above in your browser using DataLab