Summary receiver operating characteristic (SROC) curves are demonstrated for the proposed models through quantile regression techniques and different characterizations of the estimated bivariate random effects distribution
SROC.norm(param,dcop,qcondcop,tau2par,TP,FN,FP,TN,points=TRUE,curves=TRUE)
SROC.beta(param,dcop,qcondcop,tau2par,TP,FN,FP,TN,points=TRUE,curves=TRUE)
SROC(param.beta,param.normal,TP,FN,FP,TN)
A vector with the sensitivity, specifity and variabilities of the countermonotonic CopulaREMADA with beta margins
A vector with the sensitivity, specifity and variabilities of the countermonotonic CopulaREMADA with normal margins
function for copula density
function for the inverse of conditional copula cdf
function for maping Kendall's tau to copula parameter
the number of true positives
the number of false negatives
the number of false positives
the number of true negatives
logical: print individual studies
logical: print quantile regression curves
Summary receiver operating characteristic curves
Nikoloulopoulos, A.K. (2015) A mixed effect model for bivariate meta-analysis of diagnostic test accuracy studies using a copula representation of the random effects distribution. Statistics in Medicine, 34, 3842--3865. 10.1002/sim.6595.
# NOT RUN {
nq=15
gl=gauss.quad.prob(nq,"uniform")
mgrid<- meshgrid(gl$n,gl$n)
data(telomerase)
attach(telomerase)
est.n=countermonotonicCopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid)
est.b=countermonotonicCopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid)
SROC(est.b$e,est.n$e,TP,FN,FP,TN)
detach(telomerase)
data(LAG)
attach(LAG)
c180est.b=CopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid,qcondcln180,tau2par.cln180)
SROC.beta(c180est.b$e,dcln180,qcondcln180,tau2par.cln180,TP,FN,FP,TN)
detach(LAG)
data(MRI)
attach(MRI)
c270est.n=CopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,qcondcln270,tau2par.cln270)
SROC.norm(c270est.n$e,dcln270,qcondcln270,tau2par.cln270,TP,FN,FP,TN)
detach(MRI)
# }
Run the code above in your browser using DataLab