Learn R Programming

gamlss.dist (version 3.0-1)

ST1: The skew t distributions, type 1 to 5

Description

There are 5 different skew t distributions implemented in GAMLSS. The Skew t type 3 distribution Jones and Faddy (2003). The functions dST3, pST3, qST3 and rST3 define the density, distribution function, quantile function and random generation for the skew t distribution type 3.

Usage

ST1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log")
dST1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pST1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qST1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rST1(n, mu = 0, sigma = 1, nu = 0, tau = 2)

ST2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dST2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pST2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qST2(p, mu = 1, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rST2(n, mu = 0, sigma = 1, nu = 0, tau = 2)

ST3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST3(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST3(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST3(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST3(n, mu = 0, sigma = 1, nu = 1, tau = 10)

ST4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST4(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST4(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST4(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST4(n, mu = 0, sigma = 1, nu = 1, tau = 10)

ST5(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dST5(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pST5(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
qST5(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
rST5(n, mu = 0, sigma = 1, nu = 0, tau = 1)

Arguments

mu.link
Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "$1/mu^2$" and "log"
sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse" and "identity"
nu.link
Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "$1/mu^2$" and "log"
tau.link
Defines the nu.link, with "log" link as the default for the nu parameter. Other links are "inverse", "identity"
x,q
vector of quantiles
mu
vector of mu parameter values
sigma
vector of scale parameter values
nu
vector of nu parameter values
tau
vector of tau parameter values
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x],="" otherwise,="" p[x=""> x]
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required
...
for extra arguments

Value

  • ST1(), ST2(), ST3(), ST4() and ST5() return a gamlss.family object which can be used to fit the skew t type 1-5 distribution in the gamlss() function. dST1(), dST2(), dST3(), dST4() and dST5() give the density functions, pST1(), pST2(), pST3(), pST4() and pST5() give the cumulative distribution functions, qST1(), qST2(), qST3(), qST4() and qST5() give the quantile function, and rST1(), rST2(), rST3(), rST4() and rST3() generates random deviates.

Details

The probability density function of the skew t distribution type 1, (ST1), Azzalini (1986) is defined as $$f(y|\mu,\sigma,\nu, \tau)=\frac{z}{\sigma} \mbox{\hspace{0.1cm}}f_z(z) \mbox{\hspace{0.1cm}} F_z(\nu z)$$ for $-\infty0$ degrees of freedom with $\tau$ treated as a continuous parameter. The probability density function of the skew t distribution type 2, (ST2), Azzalini and Capitano (2003), is defined as $$f(y|\mu,\sigma,\nu,\frac{z}{\sigma} \mbox{\hspace{0.1cm}} f_{z_1}(z) \mbox{\hspace{0.1cm}} F_{z_2}(w) \tau)=$$ for $-\inftyST3), is defined in Chapter 10 of the GAMLSS manual. The probability density function of the skew t distribution type q, (ST4), is defined in Chapter of the GAMLSS manual. The probability density function of the skew t distribution type 5, (ST5), is defined as $$f(y|\mu,\sigma,\nu, \tau)=\frac{1}{c} \left[ 1+ \frac{z}{(a+b +z^2)^{1/2}} \right]^{a+1/2} \left[ 1- \frac{z}{(a+b+z^2)^{1/2}}\right]^{b+1/2}$$ where $c=2^{a +b-1} (a+b)^{1/2} B(a,b)$, and $B(a,b)=\Gamma(a)\Gamma(b)/ \Gamma(a+b)$ and $z=(y-\mu)/\sigma$ and $\nu=(a-b)/\left[ab(a+b) \right]^{1/2}$ and $\tau=2/(a+b)$ for $-\infty0$, $-\infty<\nu>\infty$ and $\tau>0$.

References

Jones, M.C. and Faddy, M. J. (2003) A skew extension of the t distribution, with applications. Journal of the Royal Statistical Society, Series B, 65, pp 159-174. Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554. Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.com/). Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

gamlss.family, BCCG, GA, IG LNO

Examples

Run this code
y<- rST5(200, mu=5, sigma=1, nu=.1)
hist(y)
curve(dST5(x, mu=30 ,sigma=5,nu=-1), -50, 50, main = "The ST5  density mu=30 ,sigma=5,nu=1")
# library(gamlss)
# m1<-gamlss(y~1, family=ST1)
# m2<-gamlss(y~1, family=ST2)
# m3<-gamlss(y~1, family=ST3)
# m4<-gamlss(y~1, family=ST4)
# m5<-gamlss(y~1, family=ST5) 
# GAIC(m1,m2,m3,m4,m5)

Run the code above in your browser using DataLab