spseg(x, data, method = "all", smoothing = "none", nrow = 100,
ncol = 100, window, sigma, useC = TRUE, negative.rm = FALSE,
tol = .Machine$double.eps, verbose = FALSE, ...)
SegSpatial(env, method = "all", useC = TRUE, negative.rm = FALSE,
tol = .Machine$double.eps)
Spatial
or ppp
.SegLocalEnv
.matrix
, or one that can be coerced to that class. The number of rows in owin
to be passed to smooth.ppp
. See density.ppp
. See also .Machine$double.eps
. See help(.Machine)
getLocalEnv
to compute the population composition of each local environment.SegSpatialExt
.SegSpatial
computes the set of spatial segregation measures proposed by Reardon and O'Sullivan.
spseg
is a wrapper function, which calls SegSpatial
after constructing a population density surface and its local environment parameters with user-specified options. Currently the population density surface is estimated using the rasterize
function in the density.ppp
in the getSegLocalEnv
.getSegLocalEnv
, SegSpatial-class
, rasterize
, density.ppp
# Create a random data set with 50 data points and 3 population groups
xy <- matrix(runif(100), ncol = 2)
pop <- matrix(runif(150), ncol = 3)
rana <- spseg(xy, pop, smoothing = "kernel", maxdist = 0.5)
ranb <- spseg(xy, pop, smoothing = "kernel", useExp = FALSE,
power = 0, maxdist = 0.5)
print(ranb, digits = 3)
par(mfrow = c(1, 3), mar = c(0, 1, 0, 2.5))
plot(ranb, main = "")
Run the code above in your browser using DataLab