Learn R Programming

SemiParBIVProbit (version 3.2-1)

SemiParBIVProbit: Semiparametric Bivariate Probit Modelling

Description

SemiParBIVProbit can be used to fit bivariate probit models where the linear predictors can be flexibly specified using parametric and regression spline components. Several bivariate copula distributions and asymmetric link functions are supported. During the model fitting process, the possible presence of correlated error equations, endogeneity, non-random sample selection or partial observability is accounted for. Regression spline bases are extracted from the package mgcv. Multi-dimensional smooths are available via the use of penalized thin plate regression splines (isotropic).

Usage

SemiParBIVProbit(formula, data = list(), weights = NULL, subset = NULL,  
                 start.v = NULL, Model = "B", BivD = "N", nu = 3, fp = FALSE,
                 PL = "P", eqPL = "both", valPL = c(0,0), 
                 fitPL = "pLiksp", spPL = c(0.01,0.01), 
                 hess = TRUE, gamma = 1, pPen1 = NULL, pPen2 = NULL, 
                 rinit = 1, rmax = 100, iterlimsp = 50, pr.tolsp = 1e-6)

Arguments

formula
A list of two formulas, one for equation 1 and the other for equation 2. s terms are used to specify smooth smooth functions of predictors. SemiParBIVProbit supports the use shrinkage smoothers for variable
data
An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which SemiParBIVProbit
weights
Optional vector of prior weights to be used in fitting.
subset
Optional vector specifying a subset of observations to be used in the fitting process.
start.v
Starting values for the parameters of the two equations and association coefficient can be provided here.
Model
It indicates the type of model to be used in the analysis. Possible values are "B" (bivariate model), "BSS" (bivariate model with sample selection) and "BPO" (bivariate model with partial observability).
BivD
Type of bivariate error distribution employed. Possible choices are "N", "C0", "C90", "C180", "C270", "J0", "J90", "J180", "J270", "G0", "G90", "G180", "G270", "F", "T" which stand for bivariate normal, Clayton, rotated Clayton (90 degrees),
nu
Degrees of freedom for Student-t.
fp
If TRUE, then a fully parametric model with unpenalised regression splines if fitted. See the example below.
PL
Link function to be employed. Possible choices are "P" (classic probit), "PP" (power probit), "RPP" (reciprocal power probit) and "SN" (skew normal).
eqPL
Equation(s) on which the asymmetric link function approach should be applied. Possible choices are "both", "first" and "second".
valPL
Initial values for link function shape parameters when an asymmetric link fucntion approach is employed.
fitPL
Fitting approach for shape parameters of the asymmetric link functions employed. Possible choices are "fixed", "unpLik", "pLik" and "pLiksp" which stand for fixed shape parameters, classic likelihood optimization, penalized likelihood with
spPL
Values for the smoothing parameters of the ridge penalties associated with the shape parameteres of the asymmetric link functions.
hess
If TRUE then the observed (rather than expected) information matrix is employed.
gamma
Inflation factor for the model degrees of freedom in the UBRE score. Smoother models can be obtained setting this parameter to a value greater than 1. Typically gamma = 1.4 achieves this.
pPen1, pPen2
Optional list specifying any penalties to be applied to the parametric model terms of equations 1 and 2.
rinit
Starting trust region radius. The trust region radius is adjusted as the algorithm proceeds. See the documentation of trust for further details.
rmax
Maximum allowed trust region radius. This may be set very large. If set small, the algorithm traces a steepest descent path.
iterlimsp
A positive integer specifying the maximum number of loops to be performed before the smoothing parameter estimation step is terminated.
pr.tolsp
Tolerance to use in judging convergence of the algorithm when automatic smoothing parameter estimation is used.

Value

  • The function returns an object of class SemiParBIVProbit as described in SemiParBIVProbitObject.

WARNINGS

Convergence failure may occur when the number of observations is low. Convergence failure may show when an infinite cycling between the two steps detailed above occurs. In this case, the smoothing parameters are set to the values obtained from the non-converged algorithm.

Details

The bivariate models considered in this package have probit or asymmetric links for the two model equations, and model the association between the responses through the correlation parameter $\rho$ of a standardised bivariate normal distribution, or that of a bivariate copula distribution, $\theta$. The linear predictors are flexibly specified using parametric components and smooth functions of covariates. Replacing the smooth components with their regression spline expressions yields a fully parametric bivariate probit model. In principle, classic maximum likelihood estimation can be employed. However, to avoid overfitting, penalized likelihood maximization has to be employed instead. Here the use of penalty matrices allows for the suppression of that part of smooth term complexity which has no support from the data. The trade-off between smoothness and fitness is controlled by smoothing parameters associated with the penalty matrices. Smoothing parameters are chosen to minimize the approximate Un-Biased Risk Estimator (UBRE), which can also be viewed as an approximate AIC. Automatic smoothing parameter estimation is integrated using a performance-oriented iteration approach (Gu, 1992; Wood, 2004). At each iteration, (i) the penalized weighted least squares problem is solved and (ii) the smoothing parameters of that problem estimated by approximate UBRE. Steps (i) and (ii) are iterated until convergence. Details of the underlying fitting methods are given in Radice, Marra and Wojtys (submitted). Releases previous to 3.2-7 were based on the algorithms detailed in Marra and Radice (2011, 2013).

References

Gu C. (1992), Cross validating non-Gaussian data. Journal of Computational and Graphical Statistics, 1(2), 169-179. Marra G. (2013), On P-values for Semiparametric Bivariate Probit Models. Statistical Methodology, 10(1), 23-28. Marra G. and Radice R. (2011), Estimation of a Semiparametric Recursive Bivariate Probit in the Presence of Endogeneity. Canadian Journal of Statistics, 39(2), 259-279. Marra G. and Radice R. (2013), A Penalized Likelihood Estimation Approach to Semiparametric Sample Selection Binary Response Modeling. Electronic Journal of Statistics, 7, 1432-1455. Marra G. and Radice R. (submitted), Flexible Bivariate Binary Models for Estimating the Efficacy of Phototherapy for Newborns with Jaundice. Marra G., Radice R. and Missiroli S. (2014), Testing the Hypothesis of Absence of Unobserved Confounding in Semiparametric Bivariate Probit Models. Computational Statistics, 29(3-4), 715-741. Marra G., Radice R. and Filippou P. (submitted), Regression Spline Bivariate Probit Models: A Practical Approach to Testing for Exogeneity. McGovern M.E., Barnighausen T., Marra G. and Radice R. (forthcoming), On the Assumption of Joint Normality in Selection Models: A Copula Based Approach Applied to Estimating HIV Prevalence. Epidemiology. Radice R., Marra G. and M. Wojtys (submitted), Copula Regression Spline Models for Binary Outcomes. Marra G. and Wood S.N. (2011), Practical Variable Selection for Generalized Additive Models. Computational Statistics and Data Analysis, 55(7), 2372-2387. Marra G. and Wood S.N. (2012), Coverage Properties of Confidence Intervals for Generalized Additive Model Components. Scandinavian Journal of Statistics, 39(1), 53-74. Poirier D.J. (1980), Partial Observability in Bivariate Probit Models. Journal of Econometrics, 12, 209-217. Wood S.N. (2004), Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association, 99(467), 673-686.

See Also

AT, adjCov, est.prev, gt.bpm, LM.bpm, VuongClarke.bcm, plot.SemiParBIVProbit, SemiParBIVProbit-package, SemiParBIVProbitObject, sem.checks, summary.SemiParBIVProbit, predict.SemiParBIVProbit

Examples

Run this code
library(SemiParBIVProbit)

############
## EXAMPLE 1
############
## Generate data
## Correlation between the two equations 0.5 - Sample size 400 

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rmvnorm(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2)   

y1 <- ifelse(-1.55 + 2*x1    + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*x1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2, x3)

#
#

## CLASSIC BIVARIATE PROBIT

out  <- SemiParBIVProbit(list(y1 ~ x1 + x2 + x3, 
                              y2 ~ x1 + x2 + x3), 
                         data = dataSim)
summary(out)
AIC(out)
BIC(out)

## SEMIPARAMETRIC BIVARIATE PROBIT

## "cr" cubic regression spline basis      - "cs" shrinkage version of "cr"
## "tp" thin plate regression spline basis - "ts" shrinkage version of "tp"
## for smooths of one variable, "cr/cs" and "tp/ts" achieve similar results 
## k is the basis dimension - default is 10
## m is the order of the penalty for the specific term - default is 2
## For COPULA models use BivD argument 

out  <- SemiParBIVProbit(list(y1 ~ x1 + s(x2, bs = "tp", k = 10, m = 2) + s(x3), 
                              y2 ~ x1 + s(x2) + s(x3)),  
                         data = dataSim)
sem.checks(out)
summary(out)
AIC(out)


## estimated smooth function plots - red lines are true curves

x2 <- sort(x2)
f1.x2 <- f1(x2)[order(x2)] - mean(f1(x2))
f2.x2 <- f2(x2)[order(x2)] - mean(f2(x2))
f3.x3 <- rep(0, length(x3))

par(mfrow=c(2,2),mar=c(4.5,4.5,2,2))
plot(out, eq = 1, select = 1, scale = 0); lines(x2, f1.x2, col = "red")
plot(out, eq = 1, select = 2, scale = 0); lines(x3, f3.x3, col = "red")
plot(out, eq = 2, select = 1, scale = 0); lines(x2, f2.x2, col = "red")
plot(out, eq = 2, select = 2, scale = 0); lines(x3, f3.x3, col = "red")

#
## same plots but CIs 'with intercept' 

par(mfrow=c(2,2),mar=c(4.5,4.5,2,2))
plot(out, eq = 1, select = 1, seWithMean = TRUE, scale = 0); lines(x2, f1.x2, col = "red")
plot(out, eq = 1, select = 2, seWithMean = TRUE, scale = 0); lines(x3, f3.x3, col = "red")
plot(out, eq = 2, select = 1, seWithMean = TRUE, scale = 0); lines(x2, f2.x2, col = "red")
plot(out, eq = 2, select = 2, seWithMean = TRUE, scale = 0); lines(x3, f3.x3, col = "red")


## p-values suggest to drop x3 from both equations, with a stronger 
## evidence for eq. 2. This can be also achieved using shrinkage smoothers

outSS <- SemiParBIVProbit(list(y1 ~ x1 + s(x2, bs = "cs") + s(x3, bs = "cs"), 
                               y2 ~ x1 + s(x2, bs = "cs") + s(x3, bs = "cs")), 
                          data = dataSim)

par(mfrow = c(2,2), mar = c(4.5,4.5,2,2))
plot(outSS, eq = 1, select = 1, scale = 0)
plot(outSS, eq = 1, select = 2, ylim = c(-0.1,0.1))
plot(outSS, eq = 2, select = 1, scale = 0)
plot(outSS, eq = 2, select = 2, ylim = c(-0.1,0.1))

#
#

############
## EXAMPLE 2
############
## Generate data with one endogenous variable 
## and exclusion restriction

set.seed(0)

n <- 300

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rmvnorm(n, rep(0,2), Sigma)

cov   <- rmvnorm(n, rep(0,2), Sigma, method = "svd")
cov   <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2)   

y1 <- ifelse(-1.55 + 2*x1    + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*y1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2)

#

## Testing the hypothesis of absence of endogeneity... 

LM.bpm(list(y1 ~ x1 + s(x2), y2 ~ y1 + s(x2)), dataSim)

# p-value suggests presence of endogeneity, hence fit a bivariate model


## CLASSIC RECURSIVE BIVARIATE PROBIT

out <- SemiParBIVProbit(list(y1 ~ x1 + x2, 
                             y2 ~ y1 + x2), 
                        data = dataSim)
summary(out)

## SEMIPARAMETRIC RECURSIVE BIVARIATE PROBIT

out <- SemiParBIVProbit(list(y1 ~ x1 + s(x2), 
                             y2 ~ y1 + s(x2)), 
                        data = dataSim)
summary(out)

#

## Testing the hypothesis of absence of endogeneity post estimation... 

gt.bpm(out)

#
## average treatment effect with CIs

AT(out, eq = 2, nm.bin = "y1") 


## try a Clayton copula model... 

outC <- SemiParBIVProbit(list(y1 ~ x1 + s(x2), 
                              y2 ~ y1 + s(x2)), 
                         data = dataSim, BivD = "C0")
summary(outC)
AT(outC, eq = 2, nm.bin = "y1") 

## try a Joe copula model... 

outJ <- SemiParBIVProbit(list(y1 ~ x1 + s(x2), 
                              y2 ~ y1 + s(x2)), 
                         data = dataSim, BivD = "J0")
summary(outJ)
AT(outJ, eq = 2, nm.bin = "y1") 


VuongClarke.bcm(out, outJ)

#
## recursive bivariate probit modelling with unpenalized splines 
## can be achieved as follows

outFP <- SemiParBIVProbit(list(y1 ~ x1 + s(x2, bs = "cr", k = 5), 
                               y2 ~ y1 + s(x2, bs = "cr", k = 6)), fp = TRUE, 
                          data = dataSim)
summary(outFP)

#
## SEMIPARAMETRIC RECURSIVE BIVARIATE PROBIT 
## WITH ASYMMETRIC LINK FUNCTIONS

out <- SemiParBIVProbit(list(y1 ~ x1 + s(x2), 
                             y2 ~ y1 + s(x2)), 
                        data = dataSim, PL = "SN")
summary(out) 
# same output as model with probit links

############
## EXAMPLE 3
############
## Generate data with a non-random sample selection mechanism 
## and exclusion restriction

set.seed(0)

n <- 1100

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rmvnorm(n, rep(0,2), Sigma)

SigmaC <- matrix(0.5, 3, 3); diag(SigmaC) <- 1
cov    <- rmvnorm(n, rep(0,3), SigmaC, method = "svd")
cov    <- pnorm(cov)
bi <- round(cov[,1]); x1 <- cov[,2]; x2 <- cov[,3]
  
f11 <- function(x) -0.7*(4*x + 2.5*x^2 + 0.7*sin(5*x) + cos(7.5*x))
f12 <- function(x) -0.4*( -0.3 - 1.6*x + sin(5*x))  
f21 <- function(x) 0.6*(exp(x) + sin(2.9*x)) 

ys <-  0.58 + 2.5*bi + f11(x1) + f12(x2) + u[, 1] > 0
y  <- -0.68 - 1.5*bi + f21(x1) +         + u[, 2] > 0
yo <- y*(ys > 0)
  
dataSim <- data.frame(y, ys, yo, bi, x1, x2)

## Testing the hypothesis of absence of non-random sample selection... 

LM.bpm(list(ys ~ bi + s(x1) + s(x2), yo ~ bi + s(x1)), dataSim, Model = "BSS")

# p-value suggests presence of sample selection, hence fit a bivariate model

#
## SEMIPARAMETRIC SAMPLE SELECTION BIVARIATE PROBIT
## the first equation MUST be the selection equation

out <- SemiParBIVProbit(list(ys ~ bi + s(x1) + s(x2), 
                             yo ~ bi + s(x1)), 
                        data = dataSim, Model = "BSS")
gt.bpm(out)                        

## compare the two summary outputs
## the second output produces a summary of the results obtained when
## selection bias is not accounted for

summary(out)
summary(out$gam2)

## corrected predicted probability that 'yo' is equal to 1

est.prev(out)

## estimated smooth function plots
## the red line is the true curve
## the blue line is the naive curve not accounting for selection bias

x1.s <- sort(x1[dataSim$ys>0])
f21.x1 <- f21(x1.s)[order(x1.s)]-mean(f21(x1.s))

x11()
plot(out, eq = 2, ylim = c(-1.65,0.95)); lines(x1.s, f21.x1, col="red")
par(new = TRUE)
plot(out$gam2, se = FALSE, col = "blue", ylim = c(-1.65,0.95), ylab = "", rug = FALSE)

#
#
## try a Clayton copula model... 

outC <- SemiParBIVProbit(list(ys ~ bi + s(x1) + s(x2), 
                              yo ~ bi + s(x1)), 
                         data = dataSim, Model = "BSS", BivD = "C0")
sem.checks(outC)
summary(outC)
est.prev(outC)

#

############
## EXAMPLE 4
############
## Generate data with partial observability

set.seed(0)

n <- 10000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rmvnorm(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

y1 <- ifelse(-1.55 + 2*x1 + x2 + u[,1] > 0, 1, 0)
y2 <- ifelse( 0.45 - x3        + u[,2] > 0, 1, 0)
y  <- y1*y2

dataSim <- data.frame(y, x1, x2, x3)


## BIVARIATE PROBIT with Partial Observability

out  <- SemiParBIVProbit(list(y ~ x1 + x2, 
                              y ~ x3), 
                         data = dataSim, Model = "BPO")
sem.checks(out)
summary(out)


outC <- SemiParBIVProbit(list(y ~ x1 + x2, 
                              y ~ x3), 
                         data = dataSim, Model = "BPO", BivD = "C0")
sem.checks(outC)
summary(outC)

# first ten estimated probabilities for the four events from object out

cbind(out$p11, out$p10, out$p00, out$p01)[1:10,]


# case with smooth function 
# (computationally intensive...)  

f1 <- function(x) cos(pi*2*x) + sin(pi*x)

y1 <- ifelse(-1.55 + 2*x1 + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse( 0.45 - x3            + u[,2] > 0, 1, 0)
y  <- y1*y2

dataSim <- data.frame(y, x1, x2, x3)

out  <- SemiParBIVProbit(list(y ~ x1 + s(x2), 
                              y ~ x3), 
                         data = dataSim, Model = "BPO")

sem.checks(out)
summary(out)


# plot estimated and true functions

x2 <- sort(x2); f1.x2 <- f1(x2)[order(x2)] - mean(f1(x2))
plot(out, eq = 1, scale = 0); lines(x2, f1.x2, col = "red")

#
#

Run the code above in your browser using DataLab