Learn R Programming

SemiParBIVProbit (version 3.2-4)

SemiParBIVProbit: Semiparametric Bivariate Probit Modelling

Description

SemiParBIVProbit can be used to fit bivariate probit models where the linear predictors can be flexibly specified using parametric and regression spline components, and nonparametric random effects. During the model fitting process, the possible presence of correlated error equations, endogeneity or sample selection is accounted for. Regression spline bases are extracted from the package mgcv. Multi-dimensional smooths are available via the use of penalized thin plate regression splines (isotropic). The current implementation does not support scale invariant tensor product smooths.

Usage

SemiParBIVProbit(formula.eq1, formula.eq2, data=list(), p.weights=NULL,  
                 selection=FALSE, H=FALSE, iterlimSP=50, pr.tol=1e-6, 
                 gamma=1, aut.sp=TRUE, fp=FALSE, start.v=NULL, 
                 rinit=1, rmax=100, fterm=sqrt(.Machine$double.eps), 
                 mterm=sqrt(.Machine$double.eps),   
                 control=list(maxit=50,tol=1e-6,step.half=25,
                              rank.tol=sqrt(.Machine$double.eps)),
                 npRE=FALSE, K=3, id=NULL, e.npRE=TRUE, e.npREsp=TRUE)

Arguments

formula.eq1
A GAM formula for equation 1. s terms are used to specify smooth smooth functions of predictors. SemiParBIVProbit supports the use shrinkage smoothers for variable selection purposes. See th
formula.eq2
A GAM formula for equation 2.
data
An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which SemiParBIVProbit
p.weights
Optional vector of prior weights to be used in fitting.
selection
If TRUE, then the numerical routine for bivariate probit modelling in the presence of sample selection is employed.
H
If TRUE, then the hessian (rather than the Fisher) information matrix is used for bivariate probit modelling. This option can be used for parametric models only.
iterlimSP
A positive integer specifying the maximum number of loops to be performed before the smoothing parameter estimation step is terminated.
pr.tol
Tolerance to use in judging convergence of the algorithm when automatic smoothing parameter selection is used.
gamma
It is is an inflation factor for the model degrees of freedom in the UBRE score. Smoother models can be obtained setting this parameter to a value greater than 1. Typically gamma=1.4 achieves this.
aut.sp
If TRUE, then automatic multiple smoothing parameter selection is carried out. If FALSE, then smoothing parameters are set to the values obtained from the univariate fits.
fp
If TRUE, then a fully parametric model with regression splines if fitted. See the example below.
start.v
Although not recommended, starting values for the parameters of the two equations and correlation coefficient can be provided here.
rinit
Starting trust region radius. The trust region radius is adjusted as the algorithm proceeds. See the documentation of trust for further details.
rmax
Maximum allowed trust region radius. This may be set very large. If set small, the algorithm traces a steepest descent path.
fterm
Positive scalar giving the tolerance at which the difference in objective function values in a step is considered close enough to zero to terminate the algorithm.
mterm
Positive scalar giving the tolerance at which the two-term Taylor-series approximation to the difference in objective function values in a step is considered close enough to zero to terminate the algorithm.
control
It is a list containing iteration control constants with the following elements: maxit: maximum number of iterations of the magic algorithm; tol: tolerance to use in judging convergence; step.h
npRE
If TRUE, then the routine for bivariate probit modelling with nonparametric random effects is employed.
K
If npRE=TRUE, then K represents the number of bivariate mass points and must be supplied. Default is 3.
id
If npRE=TRUE, then id represents the individual random effect identifier and must be supplied.
e.npRE
If npRE=TRUE, then e.npRE indicates whether some extra iterations in the starting value procedure have to be carried out.
e.npREsp
If npRE=TRUE, then e.npREsp indicates whether some extra iterations in the smoothing parameter selection loop have to be carried out.

Value

  • The function returns an object of class SemiParBIVProbit as described in SemiParBIVProbitObject.

WARNINGS

Any automatic smoothing parameter selection procedure is not likely to work well when the data have low information content. In bivariate probit models, this issue is especially relevant when $\rho$ is high and the number of observations low. Here, convergence failure is typically associated with an infinite cycling between the two steps detailed above. If this occurs, as some practical solutions, one might either (i) lower the total number of parameters to estimate by reducing the dimension of the regression spline bases, (ii) set the smoothing parameters to the values obtained from the univariate fits (aut.sp=FALSE), or (iii) set the smoothing parameters to the values obtained from the non-converged algorithm. The default option is (iii). Fully parametric modelling is allowed for. However, it is not possible to specify one linear predictor as a function of parametric and smooth components, and the other as a function of parametric terms only. If continuous covariates are available, then we should let the data determine which effects are linear or non-linear and for which equations.

Details

The bivariate probit model has a probit link for each of the two equations, and models the association between the responses by the correlation parameter $\rho$ of a standardised bivariate normal distribution. In a semiparametric bivariate probit model the linear predictors are flexibly specified using parametric components and smooth functions of covariates. Replacing the smooth components with their regression spline expressions yields a fully parametric bivariate probit model. In principle, classic maximum likelihood estimation can be employed. However, to avoid overfitting, penalized likelihood maximization has to be employed instead. Here the use of penalty matrices allows for the suppression of that part of smooth term complexity which has no support from the data. The trade-off between smoothness and fitness is controlled by smoothing parameters associated with the penalty matrices. Smoothing parameters are chosen to minimize the approximate Un-Biased Risk Estimator (UBRE). Automatic smoothing parameter selection is integrated using a performance-oriented iteration approach (Gu, 1992; Wood, 2004). At each iteration, (i) the penalized weighted least squares problem is solved, then (ii) the smoothing parameters of that problem estimated by approximate UBRE. Steps (i) and (ii) are iterated until convergence. Details of the underlying fitting methods are given in Marra and Radice (2011, submitted). The use of nonparametric random effects is allowed for via the option npRE and is illustrated in Example 4 below. See Marra and Papageorgiou (submitted) for full details.

References

Gu C. (1992), Cross validating non-Gaussian data. Journal of Computational and Graphical Statistics, 1(2), 169-179. Marra G. and Papageorgiou G., A semiparametric regression framework with nonparametric mixing for modeling correlated bivariate binary responses. Submitted. Marra G. and Radice R. (2011), Estimation of a Semiparametric Recursive Bivariate Probit in the Presence of Endogeneity. Canadian Journal of Statistics, 39(2), 259-279. Marra G. and Radice R., A Penalized Likelihood Estimation Approach to Semiparametric Sample Selection Binary Response Modelling. Submitted. Wood S.N. (2004), Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association, 99(467), 673-686.

See Also

AT, InfCr, LM.bpm, plot.SemiParBIVProbit, SemiParBIVProbit-package, SemiParBIVProbitObject, summary.SemiParBIVProbit, predict.SemiParBIVProbit, residuals.SemiParBIVProbit

Examples

Run this code
library(SemiParBIVProbit)

############
## EXAMPLE 1
############
## Generate data
## Correlation between the two equations 0.5 - Sample size 400 

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rmvnorm(n,rep(0,2),Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1   <- function(x) (cos(pi*2*x)) + sin(pi*x)
f2   <- function(x) (x+exp(-30*(x-0.5)^2))   

y1 <- ifelse(-1.55 + 2*x1    + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*x1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1,y2,x1,x2,x3)

#
#

## CLASSIC BIVARIATE PROBIT

out  <- SemiParBIVProbit(y1 ~ x1 + x2 + x3, 
                         y2 ~ x1 + x2 + x3, 
                         data=dataSim)
summary(out)
InfCr(out)
InfCr(out,cr="BIC")

## SEMIPARAMETRIC BIVARIATE PROBIT

## "cr" cubic regression spline basis      - "cs" shrinkage version of "cr"
## "tp" thin plate regression spline basis - "ts" shrinkage version of "tp"
## for smooths of one variable, "cr/cs" and "tp/ts" achieve similar results 
## k is the basis dimension - default is 10
## m is the order of the penalty for the specific term - default is 2

out  <- SemiParBIVProbit(y1 ~ x1 + s(x2,bs="cr",k=10,m=2) + s(x3,bs="cr",k=10), 
                         y2 ~ x1 + s(x2,bs="cr",k=10)     + s(x3,bs="cr",k=10), 
                         data=dataSim)
summary(out)
InfCr(out)


## estimated smooth function plots - red lines are true curves

x2 <- sort(x2)
f1.x2 <- f1(x2)[order(x2)]-mean(f1(x2))
f2.x2 <- f2(x2)[order(x2)]-mean(f2(x2))
f3.x3 <- rep(0,length(x3))

par(mfrow=c(2,2),mar=c(4.5,4.5,2,2))
plot(out, eq=1, select=1); lines(x2, f1.x2, col="red")
plot(out, eq=1, select=2); lines(x3, f3.x3, col="red")
plot(out, eq=2, select=1); lines(x2, f2.x2, col="red")
plot(out, eq=2, select=2); lines(x3, f3.x3, col="red")

#
## same plots but CIs 'with intercept' 

par(mfrow=c(2,2),mar=c(4.5,4.5,2,2))
plot(out, eq=1, select=1, seWithMean=TRUE); lines(x2, f1.x2, col="red")
plot(out, eq=1, select=2, seWithMean=TRUE); lines(x3, f3.x3, col="red")
plot(out, eq=2, select=1, seWithMean=TRUE); lines(x2, f2.x2, col="red")
plot(out, eq=2, select=2, seWithMean=TRUE); lines(x3, f3.x3, col="red")


## p-values suggest to drop x3 from both equations, with a stronger 
## evidence for eq. 2. This can be also achieved using shrinkage smoothers

outSS <- SemiParBIVProbit(y1 ~ x1 + s(x2,bs="cs") + s(x3,bs="cs"), 
                          y2 ~ x1 + s(x2,bs="cs") + s(x3,bs="cs"), 
                          data=dataSim)

par(mfrow=c(2,2),mar=c(4.5,4.5,2,2))
plot(outSS, eq=1, select=1)
plot(outSS, eq=1, select=2, ylim=c(-0.1,0.1))
plot(outSS, eq=2, select=1)
plot(outSS, eq=2, select=2, ylim=c(-0.1,0.1))

#
#

############
## EXAMPLE 2
############
## Generate data with one endogenous variable and exclusion restriction

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rmvnorm(n,rep(0,2),Sigma)

cov   <- rmvnorm(n,rep(0,2),Sigma, method="svd")
cov   <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1   <- function(x) (cos(pi*2*x)) + sin(pi*x)
f2   <- function(x) (x+exp(-30*(x-0.5)^2))   

y1 <- ifelse(-1.55 + 2*x1    + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*y1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1,y2,x1,x2)

#

## Testing the hypothesis of absence of endogeneity... 

LM.bpm(y1 ~ x1 + s(x2),y2 ~ y1 + s(x2),dataSim)

# p-value suggests presence of endogeneity, hence fit a bivariate model


## CLASSIC RECURSIVE BIVARIATE PROBIT

# Algorithm based on Fisher Scoring
out <- SemiParBIVProbit(y1 ~ x1 + x2, 
                        y2 ~ y1 + x2, 
                        data=dataSim)
summary(out)

# Algorithm based on Newton's method
out <- SemiParBIVProbit(y1 ~ x1 + x2, 
                        y2 ~ y1 + x2, 
                        data=dataSim,H=TRUE)
summary(out)


## SEMIPARAMETRIC RECURSIVE BIVARIATE PROBIT

out <- SemiParBIVProbit(y1 ~ x1 + s(x2), 
                        y2 ~ y1 + s(x2), 
                        data=dataSim)
summary(out)

#
## average treatment effect on the treated (ATT) with CIs

AT(out,eq=2,nm.bin="y1",E=FALSE) 

#
## recursive bivariate probit modelling with unpenalized splines 
## can be achieved as follows

outFP <- SemiParBIVProbit(y1 ~ x1 + s(x2,bs="cr",k=5), 
                          y2 ~ y1 + s(x2,bs="cr",k=6), fp=TRUE, 
                          data=dataSim)
summary(outFP)

#
#

############
## EXAMPLE 3
############
## Generate data with sample selection mechanism and exclusion restriction

set.seed(0)

n <- 1200

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rmvnorm(n,rep(0,2),Sigma)

SigmaC <- matrix(0.5, 3, 3); diag(SigmaC) <- 1
cov    <- rmvnorm(n,rep(0,3),SigmaC, method="svd")
cov    <- pnorm(cov)
bi <- round(cov[,1]); x1 <- cov[,2]; x2 <- cov[,3]
  
f11 <- function(x) -0.7*(4*x + 2.5*x^2 + 0.7*sin(5*x) + cos(7.5*x))
f12 <- function(x) -0.4*( -0.3 - 1.6*x + sin(5*x))  
f21 <- function(x) 0.6*(exp(x) + sin(2.9*x)) 

ys <-  0.58 + 2.5*bi + f11(x1) + f12(x2) + u[, 1] > 0
y  <- -0.68 - 1.5*bi + f21(x1) +         + u[, 2] > 0
yo <- y*(ys > 0)
  
dataSim <- data.frame(y,ys,yo,bi,x1,x2)

## Testing the hypothesis of absence of sample selection... 

LM.bpm(ys ~ bi + s(x1) + s(x2),yo ~ bi + s(x1),dataSim,selection=TRUE)

# p-value suggests presence of sample selection, hence fit a bivariate model

#
## SEMIPARAMETRIC SAMPLE SELECTION BIVARIATE PROBIT
## the first equation MUST be the selection equation

out <- SemiParBIVProbit(ys ~ bi + s(x1) + s(x2), 
                        yo ~ bi + s(x1), 
                        data=dataSim, selection=TRUE)

AT(out,eq=2,nm.bin="bi",E=FALSE) ## ATT

## compare the two summary outputs
## the second output produces a summary of the results obtained when only 
## the outcome equation is fitted, i.e. selection bias is not accounted for

summary(out)
summary(out$gam2)

## approximate predicted probability that 'yo' is equal to 1
## the second predicted probability does not account for selection bias

mean(pnorm(out$eta2[out$eta2!=0]))
mean(pnorm(predict(out$gam2)))

## estimated smooth function plots
## the red line is the true curve
## the blue line is the naive curve not accounting for selection bias

x1.s <- sort(x1[dataSim$ys>0])
f21.x1 <- f21(x1.s)[order(x1.s)]-mean(f21(x1.s))

plot(out, eq=2, select=1,ylim=c(-1.2,1)); lines(x1.s, f21.x1, col="red")
par(new=TRUE)
plot(out$gam2, select=1, se=FALSE, col="blue",ylim=c(-1.2,1),ylab="",rug=FALSE)

#
#

############
## EXAMPLE 4
############
## Generate data with one endogenous variable, exclusion restriction
## and subject specific features 

set.seed(0)

n.cl <- 100
n.ob.cl <- 13

sre <- round( runif(n.cl,n.ob.cl,n.ob.cl+2) ) 
t.n <- sum(sre) 
id  <- rep(seq(1,n.cl),sre) 

sigma1 <- 1
sigma2 <- 2
rho <- rho.re <- 0.5

SigmaRE <- matrix(c(sigma1^2,            sigma1*sigma2*rho.re,
                    sigma1*sigma2*rho.re,sigma2^2             ),2,2)
                    
u1 <- rmvnorm(n.cl,rep(0,2),SigmaRE,method="svd")
u  <- cbind(rep(u1[,1],sre),rep(u1[,2],sre))


Sigma  <- matrix(rho, 2, 2); diag(Sigma) <- 1
eps    <- rmvnorm(t.n,rep(0,2),Sigma)

SigmaC <- matrix(0.5, 3, 3); diag(SigmaC) <- 1
cov    <- rmvnorm(t.n,rep(0,3),SigmaC, method="svd")

x1 <- round(pnorm(cov[,1]))
x2 <- pnorm(cov[,2])
x3 <- cov[,3]

f1 <- function(x) 0.5*(exp(x) + sin(2.9*x))
f2 <- function(x) 1.8*(0.25*exp(x) - x^3)

f1.x2 <- f1(x2) - mean(f1(x2)) 
f2.x2 <- f2(x2) - mean(f2(x2))  

y1 <- ifelse(u[,1] +        -0.75*x1 + f1.x2 + x3 + eps[,1] > 0, 1, 0)
y2 <- ifelse(u[,2] +  -1.5*y1 + 1*x1 + f2.x2      + eps[,2] > 0, 1, 0)

dataSim <- data.frame(id,y1,y2,x1,x2,x3)


out <- SemiParBIVProbit(y1 ~      x1 + s(x2) + x3,
                        y2 ~ y1 + x1 + s(x2), 
                        data=dataSim,
                        npRE=TRUE, K=3, id=dataSim$id)

summary(out)
AT(out,eq=2,nm.bin="y1",E=FALSE)

x2s <- sort(x2)
f1.x2 <- f1.x2[order(x2)]
f2.x2 <- f2.x2[order(x2)]

par(mfrow=c(1,2))
plot(out, eq=1, select=1); lines(x2s, f1.x2, col="red")
plot(out, eq=2, select=1); lines(x2s, f2.x2, col="red")

#
#

Run the code above in your browser using DataLab