
SemiParBIVProbit
and of class "SemiParBIVProbit".fit$gradient
, fit$Fisher
and fit$S.h
return
the gradient vector, Fisher information (when used) and overall penalty matrix scaled
by its smoothing parameters, for the fitted bivariate probit model. See the
documentation of trust
for details on the diagnostics provided.mgcv
for full details.Method = "BSS"
.X1
and X2
.HeSh
for unpenalized models.He
. This corresponds to the Bayesian variance-covariance matrix
used for confidence/credible interval calculations.Vb*HeSh
.sum(diag(F))
.magic
in mgcv
.TRUE
then the smoothing parameter selection algorithm stopped before reaching the maximum number of iterations allowed.Method = "BSS"
.summary.SemiParBIVProbit
for details.SemiParBIVProbit
, plot.SemiParBIVProbit
, summary.SemiParBIVProbit
, predict.SemiParBIVProbit