Last chance! 50% off unlimited learning
Sale ends in
Simulates an uncorrelated MRMC FROC dataset for specified numbers of readers and modalities
SimulateFrocDataset(mu, lambda, nu, zeta1, I, J, K1, K2, lesionNum)
The intrinsic mu parameter of the RSM
The intrinsic lambda parameter of the RSM (not the physical parameter)
The intrinsic nu parameter of the RSM (not the physical parameter)
The lowest reporting threshold
The number of modalities
The number of readers
The number of non-diseased cases
The number of diseased cases
A K2 length array containing the numbers of lesions per diseased case
The return value is an FROC dataset.
See book chapters on the Radiological Search Model (RSM) for details. In this code correlations between ratings on the same case are assumed to be zero.
Chakraborty DP (2017) Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples, CRC Press, Boca Raton, FL. https://www.crcpress.com/Observer-Performance-Methods-for-Diagnostic-Imaging-Foundations-Modeling/Chakraborty/p/book/9781482214840
# NOT RUN {
set.seed(1)
K1 <- 5;K2 <- 7;
maxLL <- 2;lesionNum <- floor(runif(K2, 1, maxLL + 1))
mu <- 1;lambda <- 1;nu <- 1 ;zeta1 <- -1
I <- 2; J <- 5
frocDataRaw <- SimulateFrocDataset(
mu = mu, lambda = lambda, nu = nu, zeta1 = zeta1,
I = I, J = J, K1 = K1, K2 = K2, lesionNum = lesionNum )
## plot the data
ret <- PlotEmpiricalOperatingCharacteristics(frocDataRaw, trts= 1,
rdrs = 1, opChType = "FROC")
print(ret$Plot)
# }
Run the code above in your browser using DataLab