# NOT RUN {
# Data pre-processing
# If you use only one genotype of the expression quantitative trait loci
# (eQTL)/Copy number variation (CNV), the 1st column of
# the input matrix will be #eQTL/CNV and the remaining
# columns are the gene expression data.
## Model 0
simu.data_M0 <- SimulatedData(N = 10^3, p = 0.45,
'model0', b0.1 = 0,
b1.1 = 1, b1.2 = 1,
b1.3 = 1, sd.1 = 1)
## Model 1
simu.data_M1 <- SimulatedData(N = 10^3, p = 0.45,
'model1', b0.1 = 0,
b1.1 = 1, b1.2 = 1,
b1.3 = 1, sd.1 = 1)
## Model 2
simu.data_M2 <- SimulatedData(N = 10^3, p = 0.45,
'model2', b0.1 = 0,
b1.1 = 1, b1.2 = 1,
b1.3 = 1, sd.1 = 1)
## Model 3
simu.data_M3 <- SimulatedData(N = 10^3, p = 0.45,
'model3', b0.1 = 0,
b1.1 = 1, b1.2 = 1,
b1.3 = 1, sd.1 = 1)
## Model 4
simu.data_M4 <- SimulatedData(N = 10^3, p = 0.45,
'model4', b0.1 = 0,
b1.1 = 1, b1.2 = 1,
b1.3 = 1, sd.1 = 1)
## Multiple Parent Model
simu.data_multiparent <- SimulatedData(N = 10^3, p = 0.45,
'multiparent', b0.1 = 0,
b1.1 = 1, b1.2 = 1,
b1.3 = 1, sd.1 = 1)
## Star Model
simu.data_starshaped <- SimulatedData(N = 10^3, p = 0.45,
'starshaped', b0.1 = 0,
b1.1 = 1, b1.2 = 1,
b1.3 = 1, sd.1 = 1)
## Layered Model
simu.data_layered <- SimulatedData(N = 10^3, p = 0.45,
'layered', b0.1 = 0,
b1.1 = 1, b1.2 = 1,
b1.3 = 1, sd.1 = 1)
# }
Run the code above in your browser using DataLab