Last chance! 50% off unlimited learning
Sale ends in
Density, distribution function, quantile function and random
generation for the Singh-Maddala distribution with shape parameters a
and q
, and scale parameter scale
.
dsinmad(x, scale = 1, shape1.a, shape3.q, log = FALSE)
psinmad(q, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE)
qsinmad(p, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE)
rsinmad(n, scale = 1, shape1.a, shape3.q)
vector of quantiles.
vector of probabilities.
number of observations. If length(n) > 1
, the length
is taken to be the number required.
shape parameters.
scale parameter.
Logical.
If log = TRUE
then the logarithm of the density is returned.
dsinmad
gives the density,
psinmad
gives the distribution function,
qsinmad
gives the quantile function, and
rsinmad
generates random deviates.
See sinmad
, which is the VGAM family function
for estimating the parameters by maximum likelihood estimation.
Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
# NOT RUN {
sdata <- data.frame(y = rsinmad(n = 3000, scale = exp(2),
shape1 = exp(1), shape3 = exp(1)))
fit <- vglm(y ~ 1, sinmad(lss = FALSE, ishape1.a = 2.1), data = sdata,
trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
# }
Run the code above in your browser using DataLab