tol
. It returns a summary table from the selection process and a matrix of selected eigenvectors for the specified model.SpatialFiltering(formula, lagformula, data = list(), nb, glist = NULL, style = "C",
zero.policy = NULL, tol = 0.1, zerovalue = 1e-04, ExactEV = FALSE,
symmetric = TRUE, alpha=NULL, alternative="two.sided", verbose=NULL)
nb
style
can take values W, B, C, U, and SSFResult
object, with:lm
, eigen
, nb2listw
, listw2U
example(columbus)
lmbase <- lm(CRIME ~ INC + HOVAL, data=columbus)
sarcol <- SpatialFiltering(CRIME ~ INC + HOVAL, data=columbus,
nb=col.gal.nb, style="W", ExactEV=TRUE)
sarcol
lmsar <- lm(CRIME ~ INC + HOVAL + fitted(sarcol), data=columbus)
lmsar
anova(lmbase, lmsar)
lm.morantest(lmsar, nb2listw(col.gal.nb))
lagcol <- SpatialFiltering(CRIME ~ 1, ~ INC + HOVAL - 1, data=columbus,
nb=col.gal.nb, style="W")
lagcol
lmlag <- lm(CRIME ~ INC + HOVAL + fitted(lagcol), data=columbus)
lmlag
anova(lmbase, lmlag)
lm.morantest(lmlag, nb2listw(col.gal.nb))
Run the code above in your browser using DataLab