The Student's T distribution is closely related to the Normal()
distribution, but has heavier tails. As
StudentsT(df)
Degrees of freedom. Can be any positive number. Often
called
A StudentsT
object.
We recommend reading this documentation on https://alexpghayes.github.io/distributions3/, where the math will render with additional detail and much greater clarity.
In the following, let df
=
Support:
Mean: Undefined unless
Variance:
Undefined if
Probability density function (p.d.f):
Cumulative distribution function (c.d.f):
Nasty, omitted.
Moment generating function (m.g.f):
Undefined.
Other continuous distributions:
Beta()
,
Cauchy()
,
ChiSquare()
,
Erlang()
,
Exponential()
,
FisherF()
,
Frechet()
,
GEV()
,
GP()
,
Gamma()
,
Gumbel()
,
LogNormal()
,
Logistic()
,
Normal()
,
RevWeibull()
,
Tukey()
,
Uniform()
,
Weibull()
# NOT RUN {
set.seed(27)
X <- StudentsT(3)
X
random(X, 10)
pdf(X, 2)
log_pdf(X, 2)
cdf(X, 4)
quantile(X, 0.7)
### example: calculating p-values for two-sided T-test
# here the null hypothesis is H_0: mu = 3
# data to test
x <- c(3, 7, 11, 0, 7, 0, 4, 5, 6, 2)
nx <- length(x)
# calculate the T-statistic
t_stat <- (mean(x) - 3) / (sd(x) / sqrt(nx))
t_stat
# null distribution of statistic depends on sample size!
T <- StudentsT(df = nx - 1)
# calculate the two-sided p-value
1 - cdf(T, abs(t_stat)) + cdf(T, -abs(t_stat))
# exactly equivalent to the above
2 * cdf(T, -abs(t_stat))
# p-value for one-sided test
# H_0: mu <= 3 vs H_A: mu > 3
1 - cdf(T, t_stat)
# p-value for one-sided test
# H_0: mu >= 3 vs H_A: mu < 3
cdf(T, t_stat)
### example: calculating a 88 percent T CI for a mean
# lower-bound
mean(x) - quantile(T, 1 - 0.12 / 2) * sd(x) / sqrt(nx)
# upper-bound
mean(x) + quantile(T, 1 - 0.12 / 2) * sd(x) / sqrt(nx)
# equivalent to
mean(x) + c(-1, 1) * quantile(T, 1 - 0.12 / 2) * sd(x) / sqrt(nx)
# also equivalent to
mean(x) + quantile(T, 0.12 / 2) * sd(x) / sqrt(nx)
mean(x) + quantile(T, 1 - 0.12 / 2) * sd(x) / sqrt(nx)
# }
Run the code above in your browser using DataLab