TextData(base, var.text=NULL, var.agg=NULL, context.quali=NULL, context.quanti= NULL,
selDoc="ALL", lower=TRUE, remov.number=TRUE,lminword=1, Fmin=1,Dmin=1, Fmax=Inf,
stop.word.tm=FALSE, idiom="en", stop.word.user=NULL, segment=FALSE,
sep.strong="\u005B()\u00BF?./:\u00A1!=+;{}-\u005D", seg.nfreq=10, seg.nfreq2=10,
seg.nfreq3=10)
Information related to context.quanti and context.quali arguments:
Non-aggregate table versus aggregate table.
If var.agg=NULL:
as many rows as non-empty source-documents |
If var.agg is NON-NULL:
as many rows as as categories the aggregation variable has |
as many rows as categories the contextual categorical variable has |
print.TextData
, summary.TextData
, plot.TextData
# Non aggregate analysis
data(open.question)
res.TD<-TextData(open.question, var.text=c(9,10), remov.number=TRUE, Fmin=10, Dmin=10,
stop.word.tm=TRUE, context.quali=c("Gender","Age_Group","Education"), context.quanti=c("Age"))
# Aggregate analysis and repeated segments
data(open.question)
res.TD<-TextData(open.question, var.text=c(9,10), var.agg="Gen_Age", remov.number=TRUE,
Fmin=10, Dmin=10, stop.word.tm=TRUE, context.quali=c("Gender","Age_Group","Education"),
context.quanti=c("Age"), segment=TRUE)
Run the code above in your browser using DataLab