############
## Example 1
############
#define the prescribed inclusion probabilities
pik=c(0.2,0.7,0.8,0.5,0.4,0.4)
#select a sample
s=UPtille(pik)
#the sample is
(1:length(pik))[s==1]
############
## Example 2
############
# Selection of samples of municipalities
# with equal or unequal probabilities.
# Comparison of the accuracy by boxplots.
b=data(belgianmunicipalities)
pik=inclusionprobabilities(belgianmunicipalities$Tot04,200)
N=length(pik)
n=sum(pik)
#number of simulations; for an accurate result, increase this value
sim=10
ss=array(0,c(sim,8))
# the interest variable
y=belgianmunicipalities$TaxableIncome
# simulation and computation of the Horvitz-Thompson estimator
for(i in 1:sim)
{
cat("Step ",i,"")
ss[i,]=ss[i,]+c(
HTestimator(y,pik,UPpoisson(pik)),
HTestimator(y,pik,UPrandomsystematic(pik)),
HTestimator(y,pik,UPrandompivotal(pik)),
HTestimator(y,pik,UPtille(pik)),
HTestimator(y,pik,UPmidzuno(pik)),
HTestimator(y,pik,UPsystematic(pik)),
HTestimator(y,pik,UPpivotal(pik)),
HTestimator(y,rep(n/N,N),srswor(n,N)))
}
# boxplots of the estimators
colnames(ss) <-
c("poisson","rsyst","rpivotal","tille","midzuno","syst","pivotal","srswor")
boxplot(data.frame(ss), las=3)
# The results of the simulations can be interpreted.
# Simple random sampling
# and Poisson sampling are not accurate.
# All unequal probability sampling methods seem
# to have the same accuracy, except systematic sampling and pivotal sampling
# that have variances which depend on the order of the units in the file.
Run the code above in your browser using DataLab