# NOT RUN {
#In this example, the first 20 rows in the loadings matrix are nonzero, the rank is 2
set.seed(2021)
library(MASS)
library(pracma)
n <- 200
p <- 1000
s <- 20
r <- 2
sig2 <- 0.1
# generate eigenvectors
U.s <- randortho(s, type = c("orthonormal"))
if (r == 1) {
U <- rep(0, p)
U[1:s] <- as.vector(U.s[, 1:r])
} else {
U <- matrix(0, p, r)
U[1:s, ] <- U.s[, 1:r]
}
s.star <- rep(0, p)
s.star[1:s] <- 1
eigenvalue <- seq(20, 10, length.out = r)
# generate Sigma
if (r == 1) {
theta.true <- U * sqrt(eigenvalue)
Sigma <- tcrossprod(theta.true) + sig2*diag(p)
} else {
theta.true <- U %*% sqrt(diag(eigenvalue))
Sigma <- tcrossprod(theta.true) + sig2 * diag(p)
}
# generate n*p dataset
X <- t(mvrnorm(n, mu = rep(0, p), Sigma = Sigma))
result <- VBsparsePCA(dat = t(X), r = 2, jointly.row.sparse = TRUE, center.scale = FALSE)
loadings <- result$loadings
scores <- result$scores
# }
Run the code above in your browser using DataLab