test.data <- Harman74.cor$cov
my.vss <- VSS(test.data) #suggests that 4 factor complexity two solution is optimal
print(my.vss[,1:12],digits =2)
VSS.plot(my.vss) #see graphic window for a plot
#produces this output
# dof chisq prob sqresid fit cfit.1 cfit.2 cfit.3 cfit.4 cfit.5 cfit.6 cfit.7
#1 252 4583 0.0e+00 17.2 0.79 0.79 0.00 0.00 0.00 0.00 0.00 0.00
#2 229 3105 0.0e+00 12.9 0.84 0.75 0.84 0.00 0.00 0.00 0.00 0.00
#4 186 1689 2.3e-240 8.0 0.90 0.66 0.87 0.90 0.90 0.00 0.00 0.00
#5 166 1398 9.3e-194 7.3 0.91 0.68 0.86 0.90 0.91 0.91 0.00 0.00
#6 147 1183 2.9e-161 6.5 0.92 0.53 0.83 0.88 0.91 0.92 0.92 0.00
#7 129 1002 5.8e-135 5.7 0.93 0.47 0.78 0.88 0.91 0.92 0.93 0.93
#8 112 803 5.3e-105 5.3 0.94 0.49 0.76 0.86 0.90 0.92 0.93 0.93
#compare the above solution to a "varimax" rotated solution which suggests 1 factor (g)
my.vss <- VSS(test.data,rotate="varimax") #suggests that 1 factor complexity one solution is optimal
print(my.vss[,1:14],digits =2)
VSS.plot(my.vss) #see graphic window for a plot
# dof chisq prob sqresid fit cfit.1 cfit.2 cfit.3 cfit.4 cfit.5 cfit.6 cfit.7 cfit.8 cresidual.1
#1 252 4583 0.0e+00 17.2 0.79 0.79 0.00 0.00 0.0 0.00 0.00 0.00 0.00 17
#2 229 3105 0.0e+00 12.9 0.84 0.54 0.84 0.00 0.0 0.00 0.00 0.00 0.00 38
#3 207 2193 0.0e+00 10.1 0.88 0.46 0.79 0.88 0.0 0.00 0.00 0.00 0.00 45
#4 186 1689 2.3e-240 8.0 0.90 0.42 0.73 0.87 0.9 0.00 0.00 0.00 0.00 48
#5 166 1398 9.3e-194 7.3 0.91 0.40 0.70 0.86 0.9 0.91 0.00 0.00 0.00 50
#6 147 1183 2.9e-161 6.5 0.92 0.39 0.69 0.86 0.9 0.92 0.92 0.00 0.00 51
#7 129 1002 5.8e-135 5.7 0.93 0.39 0.70 0.84 0.9 0.92 0.93 0.93 0.00 50
#8 112 803 5.3e-105 5.3 0.94 0.39 0.69 0.83 0.9 0.92 0.93 0.93 0.94 50
Run the code above in your browser using DataLab