VSURF.thres.tune(res.thres, nmin = 1)
VSURF.thres
, which is the result of the
VSURF.thres
function.varselect.thres
variables.$x
contains the mean importances in decreasing order. $ix
contains indices of the variables.ord.imp
.VSURF.thres
function, the actual threshold is
performed like this: only variables with a mean VI larger
than nmin
* min.thres
are kept.
The function VSURF.thres.tune
allows you to change the value of
nmin
(which multiply the estimated threshold value
min.thres
), without rerunning all computations.
To get a softer threshold than default, choose a value of nmin
less than 1,
and to get a harder one, choose a value larger than 1.VSURF
, VSURF.thres
data(iris)
iris.thres <- VSURF.thres(x=iris[,1:4], y=iris[,5], ntree=100, nfor.thres=20)
iris.thres.tuned <- VSURF.thres.tune(res.thres=iris.thres, nmin=10)
iris.thres.tuned
Run the code above in your browser using DataLab