VSURF function. For refined variable selection, see VSURF other steps: VSURF.interp and VSURF.pred.## S3 method for class 'formula':
VSURF.thres(formula, data, ..., na.action=na.fail)
## S3 method for class 'default':
VSURF.thres(x, y, ntree=2000, mtry=max(floor(ncol(x)/3), 1),
            nfor.thres=50, nmin=1, ...)randomForest it is only used with the formula-type call.)randomForest parameter.randomForest parameter.randomForest
    function (see ?randomForest for further information)VSURF.thres, which is a list with the following
  components:varselect.thres variables.$x contains the mean importances in decreasing order. $ix contains indices of the variables.ord.imp.VSURF.thresnfor.thres random forests are computed using the function
  randomForest with arguments importance=TRUE. Then
  variables are sorted according to their mean variable importance (VI),
  in decreasing order. This order is kept all along the procedure.
  Next, a threshold is computed: min.thres, the minimum predicted
  value of a pruned CART tree fitted to the curve of the standard
  deviations of VI.
  Finally, the actual thresholding is performed: only variables with a
  mean VI larger than nmin * min.thres are kept.VSURF, tunedata(iris)
iris.thres <- VSURF.thres(x=iris[,1:4], y=iris[,5], ntree=100, nfor.thres=20)
iris.thres
# A more interesting example with toys data (see \code{\link{toys}})
# (a few minutes to execute)
data(toys)
toys.thres <- VSURF.thres(x=toys$x, y=toys$y)
toys.thresRun the code above in your browser using DataLab