VUS(x, y, z, method =c("Normal","NonPar"), p = 0, q = 0, alpha = 0.05, NBOOT = 100, subdivisions = 50000, lam.minus = 1/3, lam0 =1/3, lam.plus= 1/3, typeIerror = 0.05, margin =0.05,FisherZ=FALSE, optimalCut=TRUE,cut.seq=NULL,optimize=FALSE,...)
integrate
. Default, subdivisions=50000.
Normal.VUS
.integrate
, e.g., abs.tol, rel.tol, stop.on.error etc. DiagTest3Grp
with a list of components.SampleSize.VUS
and SampleSize.Youden3Grp
.where the notation $H^{-1}(.)$ denotes the inverse function of $H$ z is a function of the specificity and sensitivity, i.e., $z=z(x,y)$, which constitutes a ROC surface in the three-dimensinal space (x,y,z). The volume under the ROC surface (VUS) defined by z can be written as, $$V_{00}=\int\int_{D_{00}} \{F_0(G_+^{-1}(y))-F_0(F_-^{-1}(x))\}d_x d_y=\int_{-\infty}^{+\infty} F_-(s)G_+(s)f_0(s)d_s$$ The integration domain is $D_{00}=\{0\le x \le 1,0\le y \le G_+(F_-^{-1}(x))\}$. The equation of partial VUS will be similar to the above but the integration domain is $D_{pq}=\{p\le x \le 1,q \le y \le G_+(F_-^{-1}(x))\}$. The optimal cut-points from VUS analyse are defined as the one
Ferri, C. and Hernandez-Orallo, J. and Salido, M.A. (2003) Volume under the ROC Surface for Multi-class Problems LECTURE NOTES IN COMPUTER SCIENCE 108--120.
Normal.VUS
NonParametric.VUS
NonParametric.VUS.var
data(AL)
group <- AL$group
table(group)
##take the negated kfront marker measurements
kfront <- -AL$kfront
x <- kfront[group=="D-"]
y <- kfront[group=="D0"]
z <- kfront[group=="D+"]
##normal estimate
normal.res <- VUS(x,y,z,method="Normal",p=0,q=0,alpha=0.05)
normal.res
##nonparametric estimate
## Not run:
# nonpar.res <- VUS(x,y,z,method="NonPar",p=0,q=0,alpha=0.05,NBOOT=100)
# nonpar.res
# ## End(Not run)
## S3 method for class 'DiagTest3Grp':
print(normal.res)
## S3 method for class 'DiagTest3Grp':
plot(normal.res)
Run the code above in your browser using DataLab