Weibull: Estimated Density Values by Weibull kernel
Description
Estimated Kernel density values by using Weibull Kernel.
Usage
Weibull(y, k, h)
Arguments
y
a numeric vector of positive values.
k
gird points.
h
the bandwidth
Value
x
grid points
y
estimated values of density
Details
The Weibull kernel is developed by Salha et al. (2014). They used it to nonparametric estimation of the probability density function (pdf) and the hazard rate function for independent and identically distributed (iid) data.
Weibull Kernel is
$$ K_w\left( x, \frac{1}{h}\right)(t) =\frac{\Gamma(1+h)}{hx}\left[ \frac{t\Gamma(1+h)}{x}\right] ^{\frac{1}{h}-1} exp\left( -\left( \frac{t\Gamma(1+h)}{x}\right) ^\frac{1}{h}\right)$$
References
Salha, R. B., El Shekh Ahmed, H. I., & Alhoubi, I. M. 2014. Hazard Rate Function Estimation Using Weibull Kernel. Open Journal of Statistics4 (08), 650-661.
See Also
For esitimated values by Gumbel kernel see Gumbel. Further, for plot and MSE by Weibull kernel see plot.Weibull and mseweibull, respectively.