Learn R Programming

amap (version 0.5-1)

acprob: Robust principal component analysis

Description

Robust principal component analysis

Usage

acprob(x,h,center=TRUE,reduce=TRUE,kernel="gaussien")

Arguments

Value

An object of class acp The object is a list with components:sdevthe standard deviations of the principal components.loadingsthe matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors). This is of class "loadings": see loadings for its print method.scoresif scores = TRUE, the scores of the supplied data on the principal components.eigEigen values

Details

acpgen compute robust pca. i.e. spectral analysis of a robust variance instead of usual variance. Robust variance: see varrob

References

H. Caussinus, M. Fekri, S. Hakam and A. Ruiz-Gazen, A monitoring display of multivariate outliers Computational Statistics & Data Analysis, Volume 44, Issues 1-2, 28 October 2003, Pages 237-252

Caussinus, H and Ruiz-Gazen, A. (1993): Projection Pursuit and Generalized Principal Component Analyses, in New Directions in Statistical Data Analysis and Robustness (eds. Morgenthaler et al.), pp. 35-46. Birk�user Verlag Basel.

Caussinus, H. and Ruiz-Gazen, A. (1995). Metrics for Finding Typical Structures by Means of Principal Component Analysis. In Data Science and its Applications (eds Y. Escoufier and C. Hayashi), pp. 177-192. Tokyo: Academic Press.

See Also

princomp acpgen