Learn R Programming

xpose4 (version 4.5.3)

add.functions: Column-transformation functions for Xpose 4

Description

These functions transform existing Xpose 4 data columns, adding new columns.

Usage

add.absval(object, 
           listall = TRUE, 
           classic = FALSE) 

add.dichot(object, listall = TRUE, classic = FALSE) add.exp(object, listall = TRUE, classic = FALSE) add.log(object, listall = TRUE, classic = FALSE) add.tad(object, classic = FALSE)

Arguments

object

An xpose.data object.

listall

A logical operator specifying whether the items in the database should be listed.

classic

A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line.

Value

An xpose.data object (classic == FALSE) or null (classic == TRUE).

Details

These functions may be used to create new data columns within the Xpose data object by transforming existing ones. add.absval creates a column reflecting the absolute value of a column, add.dichot creates a categorical data column based upon a continuous variable, add.exp creates an exponentiated version of an existing variable, add.log provides log transformation, and add.tad creates a time-after-dose (TAD) data item based upon the dose and time variables in the dataset.

See Also

xpose.data

Examples

Run this code

## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## Create a column containing the absolute values of data in another 
## column
add.absval(xpdb5)

## Create a categorical data column based on a continuous data column, 
## and do not list variables 
add.dichot(xpdb5, listall = FALSE)

## Create a column containing the exponentiated values of data in 
## another column
add.exp(xpdb5)

## Create a column containing log-transformations of data in another 
## column
add.log(xpdb5)

## Create a time-after-dose column
add.tad(xpdb5)

Run the code above in your browser using DataLab