# NOT RUN {
# set seed for reproducibility
set.seed(600)
# load data
data(sim_pu_raster, sim_features)
# create minimal problem with a portfolio containing 10 solutions within 20%
# of optimality
p1 <- problem(sim_pu_raster, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.05) %>%
add_gap_portfolio(number_solutions = 5, pool_gap = 0.2) %>%
add_default_solver(gap = 0, verbose = FALSE)
# solve problem and generate portfolio
s1 <- solve(p1)
# print number of solutions found
print(length(s1))
# plot solutions
plot(stack(s1), axes = FALSE, box = FALSE)
# create multi-zone problem with a portfolio containing 10 solutions within
# 20% of optimality
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
ncol = 3)) %>%
add_gap_portfolio(number_solutions = 5, pool_gap = 0.2) %>%
add_default_solver(gap = 0, verbose = FALSE)
# solve problem and generate portfolio
s2 <- solve(p2)
# print number of solutions found
print(length(s2))
# plot solutions in portfolio
plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,
box = FALSE)
# }
Run the code above in your browser using DataLab