Learn R Programming

NominalLogisticBiplot (version 0.2)

afc: Simple Correspondence Analysis

Description

This function calculates simple correspondence analysis for a data matrix.

Usage

afc(x, dim = 2, alpha = 1)

Arguments

x
A frequency matrix or a binary matrix obtained from the original data set of nominal variables.
dim
Number of dimensions for the solution
alpha
Biplot weight for rows and columns. 1 means rows in principal coordinates and columns in standard coordinates, 0 means rows in standard coordinates and columns in principal coordinates.

Value

An object of class "afc.sol".This has some components:
Title
Title of the statistical technique
Non_Scaled_Data
Original data
Minima
vector with the minimum values for each column of the initial data matrix
Maxima
vector with the maximum values for each column of the initial data matrix
Initial_Transformation
Name of the transformation for the data
Scaled_Data
Scaled data according to the transformation
nrows
Number of rows of the data set
ncols
Number of columns of the data set
dim
Number of dimensions for the solution
CumInertia
Acumulated Inertia
Scale_Factor
Scale factor for the transformation
RowCoordinates
Coordinates for the individuals in the reduced dimension space
ColCoordinates
Coordinates for the variables in the reduced dimension space
RowContributions
Contributions of the dimensions to explain the inertia of each row
ColContributions
Contributions of the dimensions to explain the inertia of each column
Inertia
Inertia for each dimension
Eigenvalues
Eigenvalues

References

BENZECRI, J.P. (1973) L'analyse des Donnees. Vol. 2. L'analyse des correspondences. Dunod. Paris.

See Also

NominalMatrix2Binary

Examples

Run this code
  
  data(HairColor)
  G = NominalMatrix2Binary(data.matrix(HairColor))
	mca=afc(G,dim=2)
  mca
  

Run the code above in your browser using DataLab