# NOT RUN {
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd", full.names = TRUE)
predictors <- raster::stack(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species", p = p_coords, a = bg_coords,
env = predictors, categorical = "biome")
# Train a model
model <- train(method = "Maxnet", data = data, fc = "l")
# Compute the AICc
aicc(model, predictors)
# }
# NOT RUN {
# Compute the AICc using parallel computation. This reduces the time only for
# large datasets, in this case it takes longer than the previous example due
# to the time used to start and stop a cluster
aicc(model, predictors, parallel = TRUE)
# }
Run the code above in your browser using DataLab