Learn R Programming

MatrixCorrelation (version 0.9.1)

allCorrelations: All correlations

Description

Compare all correlation measures in the package (or a subset)

Usage

allCorrelations(X1, X2, ncomp1, ncomp2, methods = c("SMI", "RV", "RV2",
  "RVadj", "PSI", "r1", "r2", "r3", "r4", "GCD"), digits = 3, plot = TRUE,
  xlab = "", ylab = "", ...)

Arguments

X1
first matrix to be compared (data.frames are also accepted).
X2
second matrix to be compared (data.frames are also accepted).
ncomp1
maximum number of subspace components from the first matrix.
ncomp2
maximum number of subspace components from the second matrix.
methods
character vector containing a subset of the supported methods: "SMI", "RV", "RV2", "RVadj", "PSI", "r1", "r2", "r3", "r4", "GCD".
digits
number of digits for numerical output.
plot
logical indicating if plotting should be performed (default = TRUE).
xlab
optional x axis label.
ylab
optional y axis label.
...
additional arguments for SMI or plot.

Value

A single value measuring the similarity of two matrices.

Details

For each of the three coefficients a single scalar is computed to describe the similarity between the two input matrices.

References

  • RV: Robert, P.; Escoufier, Y. (1976). "A Unifying Tool for Linear Multivariate Statistical Methods: The RV-Coefficient". Applied Statistics 25 (3): 257-265.
  • RV2: Smilde, AK; Kiers, HA; Bijlsma, S; Rubingh, CM; van Erk, MJ (2009). "Matrix correlations for high-dimensional data: the modified RV-coefficient". Bioinformatics 25(3): 401-5.
  • Adjusted RV: Maye, CD; Lorent, J; Horgan, GW. (2011). "Exploratory analysis of multiple omics datasets using the adjusted RV coefficient". Stat Appl Genet Mol Biol. 10(14).

See Also

SMI, RV (RV2/RVadj), r1 (r2/r3/r4/GCD).

Examples

Run this code
X1  <- scale( matrix( rnorm(100*300), 100,300), scale = FALSE)
usv <- svd(X1)
X2  <- usv$u[,-3] %*% diag(usv$d[-3]) %*% t(usv$v[,-3])

allCorrelations(X1,X2, ncomp1 = 5,ncomp2 = 5)

Run the code above in your browser using DataLab