# NOT RUN {
df = mtcars2[, ! names(mtcars2) %in% 'ids' ]
m = randomForest::randomForest( disp ~ ., df)
imp = m$importance
dspace = get_data_space(df, imp, degree = 3)
pred = predict(m, newdata = dspace)
alluvial_model_response(pred, dspace, imp, degree = 3)
# partial dependency plotting method
# }
# NOT RUN {
 pred = get_pdp_predictions(df, imp
                            , .f_predict = randomForest:::predict.randomForest
                            , m
                            , degree = 3
                            , bins = 5)
 alluvial_model_response(pred, dspace, imp, degree = 3, method = 'pdp')
 
# }
Run the code above in your browser using DataLab