# NOT RUN {
dreamdata <- t(matrix(c(7,4,3,7,10,15,11,13,23,9,11,7,28,9,12,10,32,5,4,3),4,5))
bd <- cabootcrs(dreamdata)
allvarscovs(bd)
allvarscovs(bd, thing="columns")
## The function is currently defined as
function (x, thing = "rows")
{
getcovs <- function(allC, n, ncovs) {
V <- matrix(0, n, ncovs)
for (i in 1:n) {
y <- allC[i, , ]
V[i, ] <- y[upper.tri(y)]
}
invisible(V)
}
if (!(class(x) == "cabootcrsresults"))
stop(paste("Must be of type cabootcrsresults\n\n"))
if (!any(thing == c("rows", "columns")))
stop(paste("Must be rows or columns\n\n"))
ncovs <- x@axisvariances * (x@axisvariances - 1)/2
vcnames <- character(length = x@axisvariances + ncovs)
k <- 1
for (i in 1:x@axisvariances) {
vcnames[i] <- paste(" Var Axis", i)
if (i < x@axisvariances) {
for (j in (i + 1):x@axisvariances) {
vcnames[x@axisvariances + k] <- paste(" Cov axes",
i, j)
k <- k + 1
}
}
}
if (thing == "rows") {
Covs <- getcovs(x@RowCov, x@rows, ncovs)
allV <- data.frame(cbind(x@RowVar, Covs), row.names = x@rowlabels)
}
else {
Covs <- getcovs(x@ColCov, x@columns, ncovs)
allV <- data.frame(cbind(x@ColVar, Covs), row.names = x@collabels)
}
names(allV) <- vcnames
allV
}
# }
Run the code above in your browser using DataLab