prepareSGP.analyzeSGP(sgp_object,
state,
years,
content_areas,
grades,
sgp.percentiles=TRUE,
sgp.projections=TRUE,
sgp.projections.lagged=TRUE,
sgp.percentiles.baseline=TRUE,
sgp.projections.baseline=TRUE,
sgp.projections.lagged.baseline=TRUE,
simulate.sgps=TRUE,
goodness.of.fit.print=TRUE,
sgp.config,
sgp.baseline.config,
parallel.config,
...)SGP containing long formatted data in the code (from prepareSGP) slot.statyears, content_areas, and grades are missing, user can directly specify a list containing three vectors: baseline.content.areas, baseline.panel.years, and baseline.grade.sequencesyears, content_areas, and grades are missing, user can directly specify a list containing four vectors: sgp.content.areas, sgp.panel.years, sgp.grade.sequences, and basFOREACH, SNOW, MULTICORE. List may also contain WORKERS for the number of cores or nodes used in studentGrowthPercentiles or studentGrowthProjections for finer control over SGP calculations. NOTData slot as a data.table keyed using VALID_CASE, CONTENT_AREA,
YEAR, ID and the student growth percentile and/or student growth projection/trajectory results in the SGP slot.prepareSGP, combineSGP## analyzeSGP is Step 2 of 5 of abcSGP
Demonstration_Data <- sgpData_LONG
Demonstration_Data <- prepareSGP(Demonstration_Data)
Demonstration_Data <- analyzeSGP(Demonstration_Data)
## Or (explictely pass state argument)
Demonstration_Data <- prepareSGP(sgpData_LONG)
Demonstration_Data <- analyzeSGP(Demonstration_Data, state="DEMO")Run the code above in your browser using DataLab