# NOT RUN {
# See examples for lm.rrpp to see how anova.lm.rrpp works in conjunction
# with other functions
data(Pupfish)
names(Pupfish)
Pupfish$logSize <- log(Pupfish$CS) # better to not have functions in formulas
# Single-Model ANOVA
# Note: one should increase RRPP iterations but a smaller number is used
# here for demonstration efficiency. Generally, iter = 999 will take less
# than 1s for this example with a modern computer.
fit <- lm.rrpp(coords ~ logSize + Sex*Pop, SS.type = "I",
data = Pupfish, print.progress = FALSE, iter = 499)
anova(fit)
anova(fit, effect.type = "MS")
anova(fit, effect.type = "Rsq")
anova(fit, effect.type = "cohenf")
# Multi-Model ANOVA (like a Likelihood Ratio Test)
fit.size <- lm.rrpp(coords ~ logSize, SS.type = "I", data = Pupfish,
print.progress = FALSE, iter = 499)
fit.sex <- lm.rrpp(coords ~ logSize + Sex, SS.type = "I", data = Pupfish,
print.progress = FALSE, iter = 499)
fit.pop <- lm.rrpp(coords ~ logSize + Pop, SS.type = "I", data = Pupfish,
print.progress = FALSE, iter = 499)
anova(fit.size, fit.sex, fit.pop,
print.progress = FALSE) # compares two models to the first
# see lm.rrpp examples for mixed model ANOVA example and how to vary SS type
# }
Run the code above in your browser using DataLab