arrays: Orthogonal arrays in the package
Description
Orthogonal arrays in the packageUsage
L18
L36
L54
L4.2.3
L8.2.4.4.1
L9.3.4
L12.2.11
L12.2.2.6.1
L12.2.4.3.1
L16.2.8.8.1
L16.4.5
L18.3.6.6.1
L20.2.19
L20.2.2.10.1
L20.2.8.5.1
L24.2.11.4.1.6.1
L24.2.12.12.1
L24.2.13.3.1.4.1
L24.2.20.4.1
L25.5.6
L27.3.9.9.1
L28.2.12.7.1
L28.2.2.14.1
L28.2.27
L32.2.16.16.1
L32.4.8.8.1
L36.2.1.3.3.6.3
L36.2.10.3.1.6.2
L36.2.10.3.8.6.1
L36.2.13.3.2.6.1
L36.2.13.6.2
L36.2.16.9.1
L36.2.18.3.1.6.1
L36.2.2.18.1
L36.2.2.3.5.6.2
L36.2.20.3.2
L36.2.27.3.1
L36.2.3.3.2.6.3
L36.2.3.3.9.6.1
L36.2.35
L36.2.4.3.1.6.3
L36.2.8.6.3
L36.2.9.3.4.6.2
L36.3.12.12.1
L36.3.7.6.3
L40.2.19.4.1.10.1
L40.2.20.20.1
L40.2.25.4.1.5.1
L40.2.36.4.1
L44.2.15.11.1
L44.2.2.22.1
L44.2.43
L45.3.9.15.1
L48.2.24.24.1
L48.2.31.6.1.8.1
L48.2.33.3.1.8.1
L48.2.40.8.1
L48.4.12.12.1
L49.7.8
L50.5.10.10.1
L52.2.16.13.1
L52.2.2.26.1
L52.2.51
L54.3.18.18.1
L54.3.20.6.1.9.1
L56.2.27.4.1.14.1
L56.2.28.28.1
L56.2.37.4.1.7.1
L56.2.52.4.1
L60.2.15.6.1.10.1
L60.2.17.15.1
L60.2.2.30.1
L60.2.21.10.1
L60.2.23.5.1
L60.2.24.6.1
L60.2.30.3.1
L60.2.59
L63.3.12.21.1
L64.2.32.32.1
L64.2.5.4.10.8.4
L64.2.5.4.17.8.1
L64.4.14.8.3
L64.4.16.16.1
L64.4.7.8.6
L64.8.9
L68.2.18.17.1
L68.2.2.34.1
L68.2.67
L72.2.10.3.13.4.1.6.3
L72.2.10.3.16.6.2.12.1
L72.2.10.3.20.4.1.6.2
L72.2.11.3.17.4.1.6.2
L72.2.11.3.20.6.1.12.1
L72.2.12.3.21.4.1.6.1
L72.2.14.3.3.4.1.6.6
L72.2.15.3.7.4.1.6.5
L72.2.17.3.12.4.1.6.3
L72.2.18.3.16.4.1.6.2
L72.2.19.3.20.4.1.6.1
L72.2.27.3.11.6.1.12.1
L72.2.27.3.6.6.4
L72.2.28.3.2.6.4
L72.2.30.3.1.6.4
L72.2.31.6.4
L72.2.34.3.3.4.1.6.3
L72.2.34.3.8.4.1.6.2
L72.2.35.3.12.4.1.6.1
L72.2.35.3.5.4.1.6.2
L72.2.35.4.1.18.1
L72.2.36.3.2.4.1.6.3
L72.2.36.3.9.4.1.6.1
L72.2.36.36.1
L72.2.37.3.1.4.1.6.3
L72.2.37.3.13.4.1
L72.2.41.4.1.6.3
L72.2.42.3.4.4.1.6.2
L72.2.43.3.1.4.1.6.2
L72.2.43.3.8.4.1.6.1
L72.2.44.3.12.4.1
L72.2.46.3.2.4.1.6.1
L72.2.46.4.1.6.2
L72.2.49.4.1.9.1
L72.2.5.3.3.4.1.6.7
L72.2.51.3.1.4.1.6.1
L72.2.53.3.2.4.1
L72.2.6.3.3.6.6.12.1
L72.2.6.3.7.4.1.6.6
L72.2.60.3.1.4.1
L72.2.68.4.1
L72.2.7.3.4.4.1.6.6
L72.2.7.3.7.6.5.12.1
L72.2.8.3.12.4.1.6.4
L72.2.8.3.8.4.1.6.5
L72.2.9.3.12.6.3.12.1
L72.2.9.3.16.4.1.6.3
L72.3.24.24.1
L75.5.8.15.1
L76.2.19.19.1
L76.2.2.38.1
L76.2.75
L80.2.40.40.1
L80.2.51.4.3.20.1
L80.2.55.8.1.10.1
L80.2.61.5.1.8.1
L80.2.72.8.1
L80.4.10.20.1
L81.3.27.27.1
L81.9.10
L84.2.14.6.1.14.1
L84.2.2.42.1
L84.2.20.21.1
L84.2.20.3.1.14.1
L84.2.22.6.1.7.1
L84.2.27.6.1
L84.2.28.7.1
L84.2.33.3.1
L84.2.83
L88.2.43.4.1.22.1
L88.2.44.44.1
L88.2.56.4.1.11.1
L88.2.84.4.1
L90.3.26.6.1.15.1
L90.3.30.30.1
L92.2.2.46.1
L92.2.21.23.1
L92.2.91
L96.2.12.4.20.24.1
L96.2.17.4.23.6.1
L96.2.18.4.22.12.1
L96.2.19.3.1.4.23
L96.2.26.4.23
L96.2.39.3.1.4.14.8.1
L96.2.43.4.12.6.1.8.1
L96.2.43.4.15.8.1
L96.2.44.4.11.8.1.12.1
L96.2.48.48.1
L96.2.71.6.1.16.1
L96.2.73.3.1.16.1
L96.2.80.16.1
L98.7.14.14.1
L99.3.13.33.1
L100.2.16.5.3.10.3
L100.2.18.5.9.10.1
L100.2.2.50.1
L100.2.22.25.1
L100.2.29.5.5
L100.2.34.5.3.10.1
L100.2.4.10.4
L100.2.40.5.4
L100.2.5.5.4.10.3
L100.2.51.5.3
L100.2.7.5.10.10.1
L100.2.99
L100.5.20.20.1
L100.5.8.10.3
L104.2.100.4.1
L104.2.51.4.1.26.1
L104.2.52.52.1
L104.2.65.4.1.13.1
L108.2.1.3.33.6.2.18.1
L108.2.1.3.35.6.3.9.1
L108.2.10.3.31.6.1.18.1
L108.2.10.3.33.6.2.9.1
L108.2.10.3.40.6.1.9.1
L108.2.107
L108.2.12.3.29.6.3
L108.2.13.3.30.6.1.18.1
L108.2.13.6.3
L108.2.15.6.1.18.1
L108.2.17.3.29.6.2
L108.2.18.3.31.18.1
L108.2.18.3.33.6.1.9.1
L108.2.2.3.35.6.1.18.1
L108.2.2.3.37.6.2.9.1
L108.2.2.3.42.18.1
L108.2.2.54.1
L108.2.20.3.34.9.1
L108.2.21.3.1.6.2
L108.2.22.27.1
L108.2.27.3.33.9.1
L108.2.3.3.16.6.8
L108.2.3.3.32.6.2.18.1
L108.2.3.3.34.6.3.9.1
L108.2.3.3.39.18.1
L108.2.3.3.41.6.1.9.1
L108.2.34.3.29.6.1
L108.2.4.3.31.6.2.18.1
L108.2.4.3.33.6.3.9.1
L108.2.40.6.1
L108.2.8.3.30.6.2.18.1
L108.2.9.3.34.6.1.18.1
L108.2.9.3.36.6.2.9.1
L108.3.36.36.1
L108.3.37.6.2.18.1
L108.3.39.6.3.9.1
L108.3.4.6.11
L108.3.44.9.1.12.1
L112.2.104.8.1
L112.2.56.56.1
L112.2.75.4.3.28.1
L112.2.79.8.1.14.1
L112.2.89.7.1.8.1
L112.4.12.28.1
L116.2.115
L116.2.2.58.1
L116.2.23.29.1
L117.3.13.39.1
L120.2.116.4.1
L120.2.28.10.1.12.1
L120.2.30.6.1.20.1
L120.2.59.4.1.30.1
L120.2.60.60.1
L120.2.68.4.1.6.1.10.1
L120.2.70.3.1.4.1.10.1
L120.2.70.4.1.5.1.6.1
L120.2.74.4.1.15.1
L120.2.75.4.1.10.1
L120.2.75.4.1.6.1
L120.2.79.4.1.5.1
L120.2.87.3.1.4.1
L121.11.12
L124.2.123
L124.2.2.62.1
L124.2.22.31.1
L125.5.25.25.1
L126.3.20.6.1.21.1
L126.3.21.42.1
L126.3.23.6.1.7.1
L126.3.24.14.1
L128.2.3.4.11.8.13
L128.2.3.4.18.8.10
L128.2.3.4.25.8.7
L128.2.4.4.15.8.9.16.1
L128.2.4.4.22.8.6.16.1
L128.2.4.4.29.8.3.16.1
L128.2.4.4.36.16.1
L128.2.4.4.8.8.12.16.1
L128.2.5.4.10.8.11.16.1
L128.2.5.4.17.8.8.16.1
L128.2.5.4.24.8.5.16.1
L128.2.5.4.31.8.2.16.1
L128.2.5.4.8.8.14
L128.2.6.4.12.8.10.16.1
L128.2.6.4.19.8.7.16.1
L128.2.6.4.26.8.4.16.1
L128.2.6.4.33.8.1.16.1
L128.2.6.4.5.8.13.16.1
L128.2.15.8.1
L128.2.64.64.1
L128.4.32.32.1
L128.8.16.16.1
L132.2.131
L132.2.15.6.1.22.1
L132.2.18.3.1.22.1
L132.2.18.6.1.11.1
L132.2.2.66.1
L132.2.22.33.1
L132.2.27.11.1
L132.2.42.6.1
L135.3.27.45.1
L135.3.32.9.1.15.1
L136.2.132.4.1
L136.2.67.4.1.34.1
L136.2.68.68.1
L136.2.83.4.1.17.1
L140.2.139
L140.2.17.10.1.14.1
L140.2.2.70.1
L140.2.21.7.1.10.1
L140.2.22.35.1
L140.2.25.5.1.14.1
L140.2.27.5.1.7.1
L140.2.34.14.1
L140.2.36.10.1
L140.2.38.7.1
L144.12.7
L144.2.103.8.1.18.1
L144.2.111.6.1.24.1
L144.2.113.3.1.24.1
L144.2.117.8.1.9.1
L144.2.136.8.1
L144.2.16.3.3.6.6.24.1
L144.2.44.3.11.12.2
L144.2.72.72.1
L144.2.74.3.4.6.6.8.1
L144.2.75.3.3.4.1.6.6.12.1
L144.2.76.3.12.6.4.8.1
L144.2.76.3.7.4.1.6.5.12.1
L144.3.48.48.1
L144.4.11.12.2
L144.4.36.36.1
L256.2.19
L2048.2.63
Value
- All arrays are matrices of class
oa
, with all colums coded as
integers from 1 to the number of levels.
Warning
For designs with only 2-level factors, it is usually more wise to
use package FrF2. Exceptions: The three arrays by
Mee (2009; cf. section Details above) are very useful for 2-level factors.
Make sure you understand the implications of using an orthogonal main effects
array for experimentation. In particular, for some arrays there is a very severe
risk of obtaining biased main effect estimates, if there are some interactions between
experimental factors. The documentations for generalized.word.length
and
function oa.design
contain examples that illustrate this remark.Details
All arrays are guaranteed to have orthogonal main effects.
When being fully populated
with experimental factors, most of the arrays are guaranteed to work well only
under the ASSUMPTION that there are NO INTERACTIONS; known exceptions are noted
in the comment
attribute of the array. Exceptions are, for example, arrays
L128.2.15.8.1
, L256.2.19
and L2048.2.63
,
which have been taken from Mee (2009, chapter 8) and are resolution V in the
2-level factors (but are not regular arrays, there is partial aliasing between
higher order effects).
Populating an array with fewer than the maximum number of factors can
result in a reasonable design even in the presence of interactions. The degree
of confounding can be checked using various functions based on generalized.word.length
,
and some optimization of column allocation is possible
with the column
option of function oa.design
.
Such investigations of a designs properties
work well for smaller designs but may be resource-wise prohibitive for larger
designs / numbers of factors.
The array names indicate the number of runs and the numbers of factors:
The first portion of each array name (starting with L) indicates number of runs,
each subsequent pair of numbers indicates a number of levels together with the frequency with which it occurs.
For example, L18.3.6.6.1
is an 18 run design with six factors with
3 levels each and one factor with 6 levels.
It is possible to obtain an overview about
available arrays for a certain purpose by using function show.oas
,
based on the data frame oacat
, which holds
entries for most arrays and their numbers of factors (exceptions:
L18
, L36
and L54
are Taguchi arrays explicitly given,
which are listed in oacat
in an isomorphic but not identical
form ). This data frame additionally holds entries
for further attrays that can be constructed from the explicitly available arrays
as child arrays, cf. below.
The sources for most arrays listed above is Warren Kuhfelds collection of
parent arrays (exceptions: the Taguchi arrays L18
, L36
and L54
and the Mee 2009 resolution V arrays mentioned above). Using a lineage rule
given in the data frame oacat
, many further
arrays can be generated as child arrays from these arrays, cf. also Kuhfeld (2009).
It is also possible to combine arrays with each other in additional ways not
implemented in the package so far, using the nesting process described by
Warren Kuhfeld under the name expansive replacement with other designs
than those that he proposes.References
Hedayat, A.S., Sloane, N.J.A. and Stufken, J. (1999) Orthogonal Arrays: Theory and Applications, Springer, New York.
Kuhfeld, W. (2009). Orthogonal arrays. Website courtesy of SAS Institute http://support.sas.com/techsup/technote/ts723.html.
Mee, R. (2009). A Comprehensive Guide to Factorial Two-Level Experimentation.
New York: Springer.